CS473-Algorithms I

Lecture 7

Median and Order Statistics

Order Statistics(Selection Problem)

- Select the i-th smallest of n elements
(select the element with rank i)
$-i=1$: minimum
$-i=n$: maximum
$-i=\lfloor(n+1) / 2\rfloor$ or $\lceil(n+1) / 2\rceil$:median
- Naive algorithm: Sort and index i-th element

$$
\begin{aligned}
T(n) & =\Theta(n \operatorname{lgn})+\Theta(1) \\
& =\Theta(n \lg n)
\end{aligned}
$$

using merge sort or heapsort(not quicksort)

Selection in Expected Linear Time

- Randomized algorithm
- Divide and conquer
- Similar to randomized quicksort
- Like quicksort: Partitions input array recursively
- Unlike quicksort:
- Only works on one side of the partition
- Quicksort works on both sides of the partition
- Expected running times:
- SELECT: E[$n]=\Theta(n)$
- QUICKSORT: E[n] = $(n$ (n lgn)

Selection in Expected Linear Time (example)

Select the $i=7$ th smallest

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\hline
\end{array}
$$

Partition:

2	3	5	13	8	10	6	11

2	3	5	13	8	10	6	11

select the 7-3=4th smallest element recursively

Selection in Expected Linear Time

```
R-SELECT(A,p,r,i)
    if }p=r\mathrm{ then
        return A[p]
q\leftarrowR-PARTITION(A,p,r)
k}\leftarrowq-p+
if }i\leqk\mathrm{ then
    return R-SELECT(A, p,q,i)
else
    return R-SELECT(A, q+1,r,i-k)
```

$\leq x$ (k smallest elements)	$\geq x$	$x=$ pivot
p	q	

Selection in Expected Linear Time

- All elements in $\mathrm{L} \leq$ all elements in R
- L contains $|\mathrm{L}|=q-p+1=\mathrm{k}$ smallest elements of $\mathrm{A}[p \ldots r]$ if $i \leq|\mathrm{L}|=\mathrm{k}$ then
search L recursively for its i-th smallest element else
search R recursively for its ($i-k$)-th smallest element

Selection in Expected Linear Time

- Excellent algorithm in practise
- Worst-case: $\mathrm{T}(n)=\mathrm{T}(n-1)+\Theta(n) \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right)$
- Worse than sorting
- e.g., occurs when
$-i=1$ and
- Partition returns $q=r-1$ at each level of recursion
- Best-case: $\mathbf{T}(n)=\mathbf{T}(n / 2)+\Theta(n) \Rightarrow \mathbf{T}(n)=\Theta(n)$

Average-Case Analysis of Randomized Select

Recall: $\mathrm{P}(|L|=i)= \begin{cases}2 / n & \text { for } \mathrm{i}=1 \\ 1 / n & \text { for } \mathrm{i}=2,3, \ldots, n-1\end{cases}$
Upper bound: Assume i-th element always falls into the larger part
$\mathrm{T}(n) \leq \frac{1}{n} T(\max (1, n-1))+\frac{1}{n} \sum_{q=1}^{n-1} T(\max (q, n-q))+\mathrm{O}(n)$
But, $\frac{1}{\mathrm{n}} T(\max (1, n-1))=\frac{1}{\mathrm{n}} \quad T(n-1)=\frac{1}{\mathrm{n}} \mathrm{O}\left(n^{2}\right)=\mathrm{O}(n)$
$\therefore \mathrm{T}(n) \leq \frac{1}{n} \sum_{q=1}^{n-1} T(\max (q, n-q))+\mathrm{O}(n)$

Average-Case Analysis of Randomized Select

$\therefore T(n) \leq \frac{1}{\mathrm{n}} \sum_{q_{=1}^{n-1}} T(\max (q, n-q))+\mathrm{O}(n)$

$$
\max (q, n-q)= \begin{cases}\mathrm{q} & \text { if } \mathrm{q} \geq\lceil n / 2\rceil \\ n-\mathrm{q} & \text { if } \mathrm{q}<\lceil n / 2\rceil\end{cases}
$$

n is odd: $T(k)$ appears twice for $k=\lceil n / 2\rceil+1,\lceil n / 2\rceil+2, \ldots, n-1$ n is even: $T(\lceil n / 2\rceil)$ appears once $T(k)$ appears twice for $k=\lceil n / 2\rceil+1,\lceil n / 2\rceil+2, \ldots, n-1$
Hence, in both cases: $\sum_{q=1} T(\max (q, n-q))+O(n) \leq 2 \sum_{q=[n / 2]} T(q)$
$\therefore T(n) \leq \frac{2}{\mathrm{n}} \sum_{\mathrm{q}=\mathrm{T}_{n} 2}^{\mathrm{n}-1} T(q)+\mathrm{O}(n)$

Average-Case Analysis of Randomized Select

$$
T(n) \leq \quad \frac{2}{\mathrm{n}} \sum_{\mathrm{a}\{m 2}^{n-1} T(q)+\mathrm{O}(n)
$$

By substitution guess $T(n)=\mathrm{O}(n)$
Inductive hypothesis: $T(k) \leq c k, \quad \forall k<n$

$$
\begin{aligned}
\mathrm{T}(n) \leq & 2 \sum_{\mathrm{k}\{n / 2]}^{n-1} \mathrm{c} k+\mathrm{O}(n) \\
= & \left.\frac{2 \mathrm{c}}{n}\left(\sum_{\mathrm{k}=1}^{n-1} k-\sum_{\mathrm{k}=1}^{[n / 2]-1}\right)\right]+\mathrm{O}(n) \\
& \frac{2 \mathrm{c}}{n}\left(\frac{1}{2} n(n-1)-\frac{1}{2}\left\lceil\frac{n}{2}\right\rceil\left(\frac{n}{2}-1\right)\right)+\mathrm{O}(n)
\end{aligned}
$$

Average-Case Analysis of Randomized Select

$$
\begin{aligned}
T(n) & \leq \frac{2 c}{n}\left(\frac{1}{2} n(n-1)-\frac{1}{2}\left[\frac{n}{2}\right]\left(\frac{n}{2}-1\right)\right]+\mathrm{O}(n) \\
& \leq c(n-1)-\frac{c}{4} n+\frac{c}{2}+\mathrm{O}(n) \\
& =c n-\frac{c}{4} n-\frac{c}{2}+\mathrm{O}(n) \\
& =c n-\left(\left(\frac{c}{4} n+\frac{c}{2}\right)-\mathrm{O}(n)\right) \\
& \leq c n
\end{aligned}
$$

since we can choose c large enough so that ($c n / 4+c / 2$) dominates $O(n)$

Summary of Randomized Order-Statistic Selection

- Works fast: linear expected time
- Excellent algorithm in practise
- But, the worst case is very bad: $\Theta\left(n^{2}\right)$

Q: Is there an algorithm that runs in linear time in the worst case?

A: Yes, due to Blum, Floyd, Pratt, Rivest \& Tarjan[1973]
Idea: Generate a good pivot recursively..

Selection in Worst Case Linear Time

$\operatorname{SELECT}(S, n, i) \triangleright$ return \boldsymbol{i}-th element in set S with \boldsymbol{n} elements if $n \leq 5$ then

SORT S and return the i-th element
DIVIDE S into $[\mathrm{n} / 5\rceil$ groups
\triangleright first $[\mathrm{n} / 5\rceil$ groups are of size 5 , last group is of size $n \bmod 5$
FIND median set $\mathrm{M}=\left\{m_{1}, \ldots, m_{[n / 5]}\right\} \triangleright m_{\mathrm{j}}$: median of j-th group
$x \leftrightarrow \operatorname{SELECT}(\mathrm{M}, n / 5,\lfloor([n / 5 \mid+1) / 2)$
PARTITION set S around the pivot x into L and R
if $i \leq|L|$ then
return $\operatorname{SELECT}(L,|L|, i)$
else
return $\operatorname{SELECT}(\mathrm{R}, \mathrm{n}-|L|, i-|L|)$

Choosing the Pivot

1. Divide S into groups of size 5

Choosing the Pivot

Choosing the Pivot

1. Divide S into groups of size 5
2. Find the median of each group
3. Recursively select the median x of the medians

Choosing the Pivot

At least half of the medians $\geq x$
Thus $m=\lceil\lceil n / 5\rceil / 2\rceil$ groups contribute 3 elements to R except possibly the last group and the group that contains x

$$
|R| \geq 3(m-2) \geq \frac{3 n}{10}-6
$$

Analysis

Similarly

$$
|L| \geq \frac{3 n}{10}-6
$$

Therefore, SELECT is recursively called on at most $n-\left(\frac{3 n}{10}-6\right)=\frac{7 n}{10}+6$ elements

Selection in Worst Case Linear Time

$\operatorname{SELECT}(S, n, i) \triangleright$ return \boldsymbol{i}-th element in set S with \boldsymbol{n} elements
$\Theta(1)\left\{\begin{array}{c}\text { if } n \leq 5 \text { then } \\ \text { SORT } S \text { and return the } i \text {-th element }\end{array}\right.$
$\Theta(n)\{$ DIVIDE S into $\lceil\mathrm{n} / 5\rceil$ groups
$\Theta(n)\lfloor$ first $\lfloor n / 5\rfloor$ groups are of size 5 , last group is of size $n \bmod 5$
$\Theta(n)\left\{\right.$ FIND median set $\mathrm{M}=\left\{m, \ldots, m_{\lceil n / 5}\right\} \triangleright m_{j}$: median of j-th group
$\mathrm{T}(\lceil\mathrm{n} / 5\rceil)\{x \leftarrow \operatorname{SELECT}(\mathrm{M},\lceil n / 57,\lfloor(\lceil n / 5\rceil+1) / 2\rfloor$
$\Theta(n)\{$ PARTITION set S around the pivot x into L and R
$\mathrm{T}\left(\frac{7 n}{10}+6\right)\left\{\begin{array}{l}\text { if } i \leq|L| \text { then } \\ \text { else }\end{array}\right.$
return $\operatorname{SELECT}(\mathrm{R}, \mathrm{n}-|L|, i-|L|)$

Selection in Worst Case Linear Time

Thus recurrence becomes

$$
T(n) \leq T\left(\left[\frac{\mathrm{n}}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+\Theta(n)
$$

Guess $T(n)=\mathrm{O}(n)$ and prove by induction
Inductive step: $T(n) \leq \mathrm{c}\lceil\mathrm{n} / 5\rceil+\mathrm{c}(7 \mathrm{n} / 10+6)+\Theta(n)$

$$
\begin{aligned}
& \leq \mathrm{cn} / 5+c+7 \mathrm{cn} / 10+6 \mathrm{c}+\Theta(n) \\
& =9 \mathrm{cn} / 10+7 \mathrm{c}+\Theta(n) \\
& =\mathrm{cn}-[\mathrm{c}(\mathrm{n} / 10-7)-\Theta(n)] \leq \mathrm{cn} \text { for large } \mathrm{c}
\end{aligned}
$$

Work at each level of recursion is a constant factor (9/10) smaller

