Lecture 8

Heapsort
Introduction

- $O(n \lg n)$ worst case
- Sorts in place
- Another design paradigm
 - Use of a data structure (heap) to manage information during execution of algorithm
Heap Data Structure

• Nearly complete binary tree
 – Completely filled on all levels, except possibly the lowest level
 – Lowest level is filled from left to right
 – Each node of the tree stores an element

• **Height** of a node
 – Length of the longest simple downward path from the node to a leaf
 > **Height** of the tree: height of the root

• **Depth** of a node
 – Length of the simple downward path from the root to the node
Heap Property

- For every node i other than root
 - Max-Heap: $A[\text{parent}(i)] \geq A[i]$
 - Min-Heap: $A[\text{parent}(i)] \leq A[i]$

 Where $A[i]$ denotes the element stored at node i

- Will discuss Max-Heap

Fact: Largest element in a subtree of a heap is at the root of the subtree.
Example

A:

\[
\begin{array}{c}
16 \\ 14 \\ 8 \\ 2 \\
16 \\ 14 \\ 10 \\ 8 \\ 7 \\ 9 \\ 3 \\ 2 \\ 4 \\ 1 \\
3 \\ 10 \\ 6 \\ 9 \\ 7 \\ 3 \\
8 \\ 9 \\ 10 \\
2 \\ 4 \\ 1 \\
1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\
\end{array}
\]
Heap Data Structure

- Store a heap in an array with implicit links
 - Left child: $\text{left}(i) = 2i$
 - Right child: $\text{right}(i) = 2i + 1$

 Computing $2i$ is fast: left shift in binary

 - Parent of i is: $\text{parent}(i) = \lfloor i/2 \rfloor$

 Computing $\lfloor i/2 \rfloor$ is fast: right shift in binary

- Array has two attributes
 - $\text{length}[A]$: number of elements in A
 - $\text{heap-size}[A] = n$: number of elem. in heap stored in A

\[n \leq \text{length}[A] \]
Heap Operations

EXTRACT-MAX(A, n)

\[
\begin{align*}
\text{max} & \leftarrow A[1] \\
n & \leftarrow n - 1 \\
\text{HEAPIFY}(A, 1, n) \\
\text{return} \text{ max}
\end{align*}
\]

\[O(1) + \text{heapify time}\]
Heap Operations

Maintaining heap property:

Subtrees rooted at left[i] and right[i] are already heaps.

But, A[i] may violate the heap property (i.e., may be smaller than its children)

Idea: Float down the value at A[i] in the heap so that subtree rooted at i becomes a heap.

HEAPIFY(A, i, n)

if \(2i \leq n \) and \(A[2i] > A[i] \)
 then largest ← 2i
else largest ← i

if \(2i + 1 \leq n \) and \(A[2i+1] > A[\text{largest}] \)
 then largest ← 2i + 1

if largest ≠ i then
 HEAPIFY(A, largest, n)

else return
Maintaining Heap

HEAPIFY(A, 2, 10)

HEAPIFY(A, 4, 10)
Intuitive Analysis of HEAPIFY

• Consider HEAPIFY(A, i, n)
 – let \(h(i) \) be the height of node \(i \)
 – at most \(h(i) \) recursion levels
 • Constant work at each level: \(\Theta(1) \)
 – Therefore \(T(i) = O(h(i)) \)

• Heap is almost-complete binary tree
 \[\triangleright h(i) = O(lg n) \]

• Thus \(T(n) = O(lg n) \)
Formal Analysis of HEAPIFY

- Worst case occurs when last row of the subtree S_i rooted at node i is half full

- $T(n) \leq T(|S_{L(i)}|) + \Theta(1)$

- $S_{L(i)}$ and $S_{R(i)}$ are complete binary trees of heights $h(i) - 1$ and $h(i) - 2$, respectively
Formal Analysis of HEAPIFY

• Let \(m \) be the number of leaf nodes in \(S_{L(i)} \)

\[
|S_{L(i)}| = m + (m - 1) = 2m - 1
\]

ext \quad \text{int}

• \(|S_{R(i)}| = m/2 + (m/2 - 1) = m - 1 \)

• \(|S_{L(i)}| + |S_{R(i)}| + 1 = n \)

\[
(2m - 1) + (m - 1) + 1 = n \Rightarrow m = (n+1)/3
\]

\[
|S_{L(i)}| = 2m - 1 = 2(n+1)/3 - 1 = (2n/3 + 2/3) - 1 = 2n/3 - 1/3 \leq 2n/3
\]

• \(T(n) \leq T(2n/3) + \Theta(1) \Rightarrow T(n) = O(\lg n) \)

By case 2 of Master Thm
Maintaining Heap Property: Efficiency Issues

Recursion vs iteration:

- In the absence of tail recursion iterative version is in general more efficient.

Because of the pop/push operations to/from stack at each level of recursion.

HEAPIFY(A, i, n)

```plaintext
j ← i
while true do
    then largest ← 2j
  else largest ← j
    then largest ← 2j +1
  if largest ≠ j  then
    j ← largest
  else return
```

Recursion vs iteration:

- In the absence of tail recursion iterative version is in general more efficient.

Because of the pop/push operations to/from stack at each level of recursion.
Building Heap

- Use **HEAPIFY** in a bottom-up manner
 - This processing order guarantees that $S_{L(i)}$ and $S_{R(i)}$ are already heaps when **HEAPIFY** is run on node i

Lemma: last $\left\lceil n/2 \right\rceil$ nodes of a heap are all leaves

Proof:

- $m = 2^{d-1}$: # nodes at level $d - 1$
- f: # nodes at level d (last level)
Proof of Lemma

- # of leaves = \(f + (m - \lceil f/2 \rceil) \)

 \[= m + \lfloor f/2 \rfloor \]

\[m + (m - 1) + f = n \]

\[2m + f = n + 1 \]

\[\lfloor \frac{1}{2} (2m + f) \rfloor = \lfloor \frac{1}{2} (n + 1) \rfloor \]

\[\lfloor m + f/2 \rfloor = \lceil n/2 \rceil \]

\[m + \lfloor f/2 \rfloor = \lceil n/2 \rceil \]

- # of leaves = \(\lceil n/2 \rceil \)

Q.E.D
Building Heap

BUILD-HEAP\((A, n)\)

\[
\text{for } i \leftarrow \left\lfloor \frac{n}{2} \right\rfloor \text{ downto } 1 \text{ do } \\
\text{HEAPIFY}(A, i, n)
\]

Running time analysis

- Get simple \(O(n \log n)\) bound
 - \(n\) calls to **HEAPIFY** each of which takes \(O(\log n)\) time
 - Loose bound
 - A good approach in general
 - Start by proving easy bound
 - Then, try to tighten it
Build-Heap: Example

1. Start with an array:
 4 13 216 9 10 14 8 7

2. Build the heap:

- **First iteration:**
 - Parent of 16 is 4, since 16 > 4.
 - Swap 16 and 4:
 - 4 13 216 9 10 14 8 7

- **Second iteration:**
 - Parent of 16 is 2, since 16 > 2.
 - No swap needed:
 - 4 13 216 9 10 14 8 7

- **Third iteration:**
 - Parent of 9 is 1, since 9 > 1.
 - No swap needed:
 - 4 13 216 9 10 14 8 7

- **Fourth iteration:**
 - Parent of 10 is 3, since 10 > 3.
 - No swap needed:
 - 4 13 216 9 10 14 8 7

The heap is now correctly built.
Build-Heap: Example (cont’)

Diagram showing the process of building a heap with a series of numbers.
Build-Heap: tighter running time analysis

If the heap is complete binary tree then $h_\ell = d - \ell$

Otherwise, nodes at a given level do not all have the same height

But we have $d - \ell - 1 \leq h_\ell \leq d - \ell$
Build-Heap: tighter running time analysis

Assume that all nodes at level $\ell = d - 1$ are processed

$$T(n) = \sum_{\ell=0}^{d-1} n_\ell \mathcal{O}(h_\ell) = \mathcal{O}(\sum_{\ell=0}^{d-1} n_\ell h_\ell) \quad \left\{ \begin{array}{l} n_\ell = 2^\ell = \# \text{ of nodes at level } \ell \\ h_\ell = \text{height of nodes at level } \ell \end{array} \right.$$

$$\therefore T(n) = \mathcal{O}\left(\sum_{\ell=0}^{d-1} 2^\ell (d - \ell)\right)$$

Let $h = d - \ell \Rightarrow \ell = d - h$ (change of variables)

$$T(n) = \mathcal{O}\left(\sum_{h=1}^{d} h 2^{d-h}\right) = \mathcal{O}\left(\sum_{h=1}^{d} h 2^{d/2^h}\right) = \mathcal{O}\left(2^d \sum_{h=1}^{d} h (1/2)^h\right)$$

but $2^d = \Theta(n) \Rightarrow T(n) = \mathcal{O}\left(n \sum_{h=1}^{d} h (1/2)^h\right)$
Build-Heap: tighter running time analysis

\[\sum_{h=1}^{d} h(1/2)^h \leq \sum_{h=0}^{d} h(1/2)^h \leq \sum_{h=0}^{\infty} h(1/2)^h \]

recall infinite decreasing geometric series

\[\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \text{ where } |x| < 1 \]

differentiate both sides

\[\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2} \]
Build-Heap: tighter running time analysis

\[
\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}
\]

then, multiply both sides by \(x\)

\[
\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}
\]

in our case: \(x = 1/2\) and \(k = h\)

\[\therefore \sum_{h=0}^{\infty} h(1/2)^h = \frac{1/2}{(1-1/2)^2} = 2 = \text{O}(1)\]

\[\therefore T(n) = \text{O}(n \sum_{h=1}^{d} h(1/2)^h) = \text{O}(n)\]
Heapsort Algorithm

The **HEAPSORT** algorithm

1. Build a heap on array $A[1 \ldots n]$ by calling $\text{BUILD-HEAP}(A, n)$
2. The largest element is stored at the root $A[1]$
3. Discard node n from the heap
4. Subtrees (S_2 & S_3) rooted at children of root remain as heaps
 but the new root element may violate the heap property
 Make $A[1 \ldots n - 1]$ a heap by calling $\text{HEAPIFY}(A, 1, n - 1)$
5. $n \leftarrow n - 1$
6. Repeat steps 2–4 until $n = 2$
Heapsort Algorithm

HEAPSORT \((A, n)\)

BUILD-HEAP \((A, n)\)

for \(i \leftarrow n \) downto 2 do

exchange \(A[1] \leftrightarrow A[i]\)

HEAPIFY \((A, 1, i - 1)\)
Heapsort: Example
Heapsort: Example

1. 8
 - 2
 - 7
 - 4
 - 5
2. 6
 - 1
 - 3
3. 3
4. 3
5. 9
6. 9
7. 4
8. 5
9. 1
10. 14
11. 16
Heapsort: Example
Heapsort Run Time Analysis

• **BUILD-HEAP** takes $O(n)$ time

• i-th iteration of for loop takes $O(lg(n – i))$ time

\[
T(n) = \sum_{i=1}^{n-1} O(lg(n – i)) = \sum_{k=1}^{n-1} O(lg k) = O\left(\sum_{k=1}^{n-1} lg k\right) = O(n lg n)
\]

• **Heapsort** is a very good algorithm but, a good implementation of **quicksort** always beats **heapsort** in practice

• However, **heap data structure** has many popular applications, and it can be efficiently used for implementing **priority queues**
Data structures for Dynamic Sets

• Consider sets of records having key and satellite data
Operations on Dynamic Sets

- **Queries**: Simply return info; **Modifying operations**: Change the set

 - INSERT\((S, x)\): (Modifying) \(S \leftarrow S \cup \{x\}\)
 - DELETE\((S, x)\): (Modifying) \(S \leftarrow S \setminus \{x\}\)
 - MAX\((S)\) / MIN\((S)\): (Query) return \(x \in S\) with the largest/smallest key
 - EXTRACT-MAX\((S)\) / EXTRACT-MIN\((S)\): (Modifying) return and delete \(x \in S\) with the largest/smallest key
 - SEARCH\((S, k)\): (Query) return \(x \in S\) with \(key[x] = k\)
 - SUCCESSOR\((S, x)\) / PREDECESSOR\((S, x)\): (Query) return \(y \in S\) which is the next larger/smaller element after \(x\)

- Different data structures support/optimize different operations
Priority Queues \((PQ)\)

- **Supports**
 - INSERT
 - MAX / MIN
 - EXTRACT-MAX / EXTRACT-MIN

One application: Schedule jobs on a shared resource

- \(PQ\) keeps track of jobs and their relative priorities
- When a job is finished or interrupted, highest priority job is selected from those pending using EXTRACT-MAX
- A new job can be added at any time using INSERT
Priority Queues

- **Another application**: Event-driven simulation
 - Events to be simulated are the items in the PQ
 - Each event is associated with a time of occurrence which serves as a *key*
 - Simulation of an event can cause other events to be simulated in the future
 - Use `EXTRACT-MIN` at each step to choose the next event to simulate
 - As new events are produced insert them into the PQ using `INSERT`
Implementation of Priority Queue

- **Sorted linked list**: Simplest implementation
 - **INSERT**
 - $O(n)$ time
 - Scan the list to find place and splice in the new item
 - **EXTRACT-MAX**
 - $O(1)$ time
 - Take the first element

△ Fast extraction but slow insertion.
Implementation of Priority Queue

- **Unsorted linked list**: Simplest implementation
 - **INSERT**
 - $O(1)$ time
 - Put the new item at front
 - **EXTRACT-MAX**
 - $O(n)$ time
 - Scan the whole list

▶ Fast insertion but **slow** extraction

Sorted linked list is better on the average
- **Sorted list**: on the average, scans $n/2$ elem. per insertion
- **Unsorted list**: always scans n elem. at each extraction
Heap Implementation of PQ

- **INSERT** and **EXTRACT-MAX** are both $O(\log n)$
 - good compromise between fast insertion but slow extraction and vice versa
- **EXTRACT-MAX**: already discussed **HEAP-EXTRACT-MAX**

INSERT: Insertion is like that of Insertion-Sort.

Traverses $O(\log n)$ nodes, as **HEAPIFY** does but makes fewer comparisons and assignments

- **HEAPIFY**: compares parent with both children
- **HEAP-INSERT**: with only one

HEAP-INSERT(A, key, n)

\[
\begin{align*}
n & \leftarrow n + 1 \\
i & \leftarrow n \\
\text{while } i > 1 \text{ and } A\lfloor i/2 \rfloor < key & \text{ do} \\
A[i] & \leftarrow A\lfloor i/2 \rfloor \\
i & \leftarrow \lfloor i/2 \rfloor \\
A[i] & \leftarrow key
\end{align*}
\]
HEAP-INSERT(A, 15)
Heap Increase Key

- Key value of i-th element of heap is increased from $A[i]$ to key

```
HEAP-INCREASE-KEY(A, i, key)
  if key < A[i] then
    return error
  while $i > 1$ and $A[\lfloor i/2 \rfloor] < key$ do
    A[i] ← A[\lfloor i/2 \rfloor]
    i ← \lfloor i/2 \rfloor
  A[i] ← key
```
HEAP-INCREASE-KEY(A, 9, 15)
Heap Implementation of PQ

<table>
<thead>
<tr>
<th>key</th>
<th>data</th>
<th>H-ptr</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>g</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>h</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>i</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>j</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>k</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>l</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>n</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>o</td>
<td>*</td>
<td>-</td>
</tr>
</tbody>
</table>

[Diagram of a min heap with keys and pointers]