
CS 473 Lecture 9 1

CS473-Algorithms I

Lecture 9

Sorting in Linear Time

How fast can we sort?
All the sorting algorithms we have seen so far
are comparison sorts: only use comparisons to
determine the relative order of elements.
• E.g., insertion sort, merge sort, quicksort,

heapsort.
The best worst-case running time that we’ve
seen for comparison sorting is O(n lg n) .

Is O(n lg n) the best we can do?

Decision trees can help us answer this question.

Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

Sort 〈a1, a2, …, an〉

Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 4Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

4 ≤ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to
indicate that the ordering aπ(1) ≤ aπ(2) ≤ L ≤ aπ(n) has been
established.

4 ≤ 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

Decision-tree model
A decision tree can model the execution of
any comparison sort:
• One tree for each input size n.
• View the algorithm as splitting whenever

it compares two elements.
• The tree contains the comparisons along

all possible instruction traces.
• The running time of the algorithm = the

length of the path taken.
• Worst-case running time = height of tree.

Lower bound for decision-
tree sorting

Theorem. Any decision tree that can sort n
elements must have height Ω(n lg n) .
Proof. The tree must contain ≥ n! leaves, since
there are n! possible permutations. A height-h
binary tree has ≤ 2h leaves. Thus, n! ≤ 2h .
∴ h ≥ lg(n!) (lg is mono. increasing)

≥ lg ((n/e)n) (Stirling’s formula)
= n lg n – n lg e
= Ω(n lg n) .

Lower bound for comparison
sorting

Corollary. Heapsort and merge sort are
asymptotically optimal comparison sorting
algorithms.

Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .

Counting sort

for i ← 1 to k
do C[i] ← 0

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

Counting-sort example

A: 44 11 33 44 33

B:

1 2 3 4 5

C:
1 2 3 4

Loop 1

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 00
1 2 3 4

for i ← 1 to k
do C[i] ← 0

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 11
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 22
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{key = i}|

Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 22 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 55

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

Loop 4

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55
1 2 3 4

C': 11 11 22 55

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

Loop 4

A: 44 11 33 44 33

B: 33 44

1 2 3 4 5

C: 11 11 22 55
1 2 3 4

C': 11 11 22 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

Loop 4

A: 44 11 33 44 33

B: 33 33 44

1 2 3 4 5

C: 11 11 22 44
1 2 3 4

C': 11 11 11 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

Loop 4

A: 44 11 33 44 33

B: 11 33 33 44

1 2 3 4 5

C: 11 11 11 44
1 2 3 4

C': 00 11 11 44

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

Loop 4

A: 44 11 33 44 33

B: 11 33 33 44 44

1 2 3 4 5

C: 00 11 11 44
1 2 3 4

C': 00 11 11 33

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1

Analysis
for i ← 1 to k

do C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n
do C[A[j]] ← C[A[j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[j]]] ← A[j]

C[A[j]] ← C[A[j]] – 1
Θ(n + k)

Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n lg n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n lg n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between

elements occurs!

Stable sorting

Counting sort is a stable sort: it preserves
the input order among equal elements.

A: 44 11 33 44 33

B: 11 33 33 44 44

Exercise: What other sorts have this property?

Radix sort

• Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See
Appendix .)

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on

most-significant digit first.
• Good idea: Sort on least-significant digit

first with auxiliary stable sort.

Herman Hollerith
(1860-1929)

• The 1880 U.S. Census took almost
10 years to process.

• While a lecturer at MIT, Hollerith
prototyped punched-card technology.

• His machines, including a “card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

• He founded the Tabulating Machine Company in
1911, which merged with other companies in 1924
to form International Business Machines.

“Modern” IBM card

So, that’s why text windows have 80 columns!

Produced by
the WWW
Virtual Punch-
Card Server.

• One character per column.

http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard

Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
into the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the last
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be
a folk invention originated by machine operators.

Hollerith’s MSD-First Radix Sort

• Sort numbers on most-significant-digit (MSD)
− sort each of the resulting bins recursively

− then, combine the decks in order

• Cards in 9 out of 10 bins must be put aside to
sort each bin
− may require very large number of sorting passes

− may generate very large number of intermediate
card piles to maintain

Hollerith’s MSD-First Radix Sort

S(d): # of sorting passes needed to sort d-digit numbers
(worst-case)

Recurrence: S(d) =10S(d−1) +1 with S(1) =1

S(d) =10S(d−1)+1=10(10S(d−2)+1)+1=102S(d−2)+101+100

=10iS(d−i)+10i−1+10i−2+…+101+100

Iteration terminates when i=d−1 with S(d−(d−1))=S(1)=1

⇒−=
−
−

==∑
−

=

)110(
9
1

110
11010)(

1

0

d
dd

i

idS)110(
9
1)(−= ddS

Hollerith’s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)
Each sorting pass generates 9 intermediate piles except the
sorting passes on LSDs (there are 10d−1 such sortings)

P(d) = 9(S(d) −10d−1) = 9(−10d−1)

= 9× (10d−1−1−9×10d−1)

P(d) = 10d−1−1

Alternative solution by solving the reccurrence:
P(d) = 10P(d −1)+9
P(1) = 0

9
1

9
110 −d

LSD-First Radix Sort
Radix Sort: Counter-intuitive solution

• Sort numbers on their least significant digit (LSD) first

• Combine the cards into a single deck with
– the cards in the 0-bin preceeding
– the cards in the 1-bin preceeding
– the cards in the 2-bin, and so on.

• Continue this sorting process for the other digits
– from the LSD towards the MSD

Requires only d sorting passes
Does not generate any intermediate card piles

Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in
digit t are correctly sorted.

• Sort on digit t

Correctness of radix sort
Induction on digit position
• Assume that the numbers

are sorted by their low-order
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in
digit t are correctly sorted.
Two numbers equal in digit t
are put in the same order as
the input ⇒ correct order.

Analysis of radix sort

• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.
• Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word

8 8 8 8

r = 8 ⇒ b/r = 4 passes of counting sort on
base-28 digits; or r = 16 ⇒ b/r = 2 passes of
counting sort on base-216 digits.

How many passes should we make?

Analysis (continued)
Recall: Counting sort takes Θ(n + k) time to
sort n numbers in the range from 0 to k – 1.
If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes Θ(n + 2r) time.
Since there are b/r passes, we have

()

 +Θ= rn

r
bbnT 2),(.

Choose r to minimize T(n, b):
• Increasing r means fewer passes, but as

r > lg n, the time grows exponentially.>

Choosing r
()

 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0.
Or, just observe that we don’t want 2r > n, and
there’s no harm asymptotically in choosing r as
large as possible subject to this constraint.

>

Choosing r = lg n implies T(n, b) = Θ(bn/lg n) .

• For numbers in the range from 0 to nd – 1, we
have b = d lg n ⇒ radix sort runs in Θ(d n) time.

Conclusions

Example (32-bit numbers):
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least lg 2000 =

11 passes.

In practice, radix sort is fast for large inputs, as
well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
quicksort fares better on modern processors,
which feature steep memory hierarchies.

