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CS473-Algorithms I

Lecture 9

Sorting in Linear Time



 

How fast can we sort?
All the sorting algorithms we have seen so far 
are comparison sorts: only use comparisons to 
determine the relative order of elements.
• E.g., insertion sort, merge sort, quicksort, 

heapsort.
The best worst-case running time that we’ve 
seen for comparison sorting is O(n lg n) .

Is O(n lg n) the best we can do?

Decision trees can help us answer this question. 



Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai ≤ aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

Sort 〈a1, a2, …, an〉
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•The right subtree shows subsequent comparisons if ai ≥ aj.

9 ≥ 4Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:
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Each internal node is labeled i:j for i, j ∈ {1, 2,…, n}.
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•The right subtree shows subsequent comparisons if ai ≥ aj.
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= 〈 9, 4, 6 〉:



Decision-tree example

1:21:2

2:32:3

123123 1:31:3

132132 312312

1:31:3

213213 2:32:3

231231 321321

Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤ L ≤ aπ(n) has been 
established.

4 ≤ 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:



Decision-tree model
A decision tree can model the execution of 
any comparison sort:
• One tree for each input size n. 
• View the algorithm as splitting whenever 

it compares two elements.
• The tree contains the comparisons along 

all possible instruction traces.
• The running time of the algorithm = the 

length of the path taken.
• Worst-case running time = height of tree.



Lower bound for decision-
tree sorting

Theorem. Any decision tree that can sort n 
elements must have height Ω(n lg n) .
Proof. The tree must contain ≥ n! leaves, since 
there are n! possible permutations.  A height-h
binary tree has ≤ 2h leaves.  Thus, n! ≤ 2h .
∴ h ≥ lg(n!) (lg is mono. increasing)

≥ lg ((n/e)n) (Stirling’s formula)
= n lg n – n lg e
= Ω(n lg n) .



Lower bound for comparison 
sorting

Corollary. Heapsort and merge sort are 
asymptotically optimal comparison sorting 
algorithms.



Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[ j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .



Counting sort

for i ← 1 to k
do C[i] ← 0

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1



Counting-sort example

A: 44 11 33 44 33

B:

1 2 3 4 5

C:
1 2 3 4



Loop 1

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 00
1 2 3 4

for i ← 1 to k
do C[i] ← 0



Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|



Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|



Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 11
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|



Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 22
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|



Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|



Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 22 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|



Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|



Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 55

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|



Loop 4

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55
1 2 3 4

C': 11 11 22 55

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1



Loop 4

A: 44 11 33 44 33

B: 33 44

1 2 3 4 5

C: 11 11 22 55
1 2 3 4

C': 11 11 22 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1



Loop 4

A: 44 11 33 44 33

B: 33 33 44

1 2 3 4 5

C: 11 11 22 44
1 2 3 4

C': 11 11 11 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1



Loop 4

A: 44 11 33 44 33

B: 11 33 33 44

1 2 3 4 5

C: 11 11 11 44
1 2 3 4

C': 00 11 11 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1



Loop 4

A: 44 11 33 44 33

B: 11 33 33 44 44

1 2 3 4 5

C: 00 11 11 44
1 2 3 4

C': 00 11 11 33

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1



Analysis
for i ← 1 to k

do C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1
Θ(n + k)



Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n lg n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n lg n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between 

elements occurs!



Stable sorting

Counting sort is a stable sort: it preserves 
the input order among equal elements.

A: 44 11 33 44 33

B: 11 33 33 44 44

Exercise: What other sorts have this property?



Radix sort

• Origin: Herman Hollerith’s card-sorting 
machine for the 1890 U.S. Census.  (See 
Appendix     .)

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on 

most-significant digit first.
• Good idea: Sort on least-significant digit 

first with auxiliary stable sort.



Herman Hollerith
(1860-1929)

• The 1880 U.S. Census took almost
10 years to process.

• While a lecturer at MIT, Hollerith 
prototyped punched-card technology.

• His machines, including a “card sorter,” allowed 
the 1890 census total to be reported in 6 weeks.

• He founded the Tabulating Machine Company in 
1911, which merged with other companies in 1924 
to form International Business Machines.



“Modern” IBM card

So, that’s why text windows have 80 columns!

Produced by 
the WWW 
Virtual Punch-
Card Server.

• One character per column.

http://www.facade.com/legacy/punchcard
http://www.facade.com/legacy/punchcard


Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be 
counted with comparatively few counters or relays by first 
assorting the cards according to the first items entering 
into the combinations, then reassorting each group 
according to the second item entering into the combination, 
and so on, and finally counting on a few counters the last 
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be 
a folk invention originated by machine operators.



Hollerith’s MSD-First Radix Sort

• Sort numbers on most-significant-digit (MSD)
− sort each of the resulting bins recursively

− then, combine the decks in order

• Cards in 9 out of 10 bins must be put aside to 
sort each bin
− may require very large number of sorting passes

− may generate very large number of intermediate 
card piles to maintain



Hollerith’s MSD-First Radix Sort

S(d): # of sorting passes needed to sort d-digit numbers
(worst-case)

Recurrence: S(d) =10S(d−1) +1 with S(1) =1

S(d) =10S(d−1)+1=10(10S(d−2)+1)+1=102S(d−2)+101+100

=10iS(d−i)+10i−1+10i−2+…+101+100

Iteration terminates when i=d−1 with S(d−(d−1))=S(1)=1
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Hollerith’s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)
Each sorting pass generates 9 intermediate piles except the 
sorting passes on LSDs (there are 10d−1 such sortings)

P(d) = 9(S(d) −10d−1) = 9(             −10d−1) 

= 9× (10d−1−1−9×10d−1)

P(d) = 10d−1−1

Alternative solution by solving the reccurrence:  
P(d) = 10P(d −1)+9
P(1) = 0

9
1

9
110 −d



LSD-First Radix Sort
Radix Sort: Counter-intuitive solution

• Sort numbers on their least significant digit (LSD) first

• Combine the cards into a single deck with
– the cards in the 0-bin preceeding
– the cards in the 1-bin preceeding
– the cards in the 2-bin, and so on.

• Continue this sorting process for the other digits
– from the LSD towards the MSD

Requires only d sorting passes
Does not generate any intermediate card piles



Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9



• Sort on digit t

Correctness of radix sort
Induction on digit position 
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9



• Sort on digit t

Correctness of radix sort
Induction on digit position 
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in 
digit t are correctly sorted.



• Sort on digit t

Correctness of radix sort
Induction on digit position 
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in 
digit t are correctly sorted.
Two numbers equal in digit t
are put in the same order as 
the input ⇒ correct order.



Analysis of radix sort

• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.
• Each word can be viewed as having b/r base-2r

digits.
Example: 32-bit word

8 8 8 8

r = 8 ⇒ b/r = 4 passes of counting sort on 
base-28 digits; or r = 16 ⇒ b/r = 2 passes of 
counting sort on base-216 digits.

How many passes should we make?



Analysis (continued)
Recall: Counting sort takes Θ(n + k) time to 
sort n numbers in the range from 0 to k – 1.
If each b-bit word is broken into r-bit pieces, 
each pass of counting sort takes Θ(n + 2r) time.  
Since there are b/r passes, we have

( )




 +Θ= rn

r
bbnT 2),( .

Choose r to minimize T(n, b):
• Increasing r means fewer passes, but as 

r >  lg n, the time grows exponentially.>



Choosing r
( )





 +Θ= rn

r
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Minimize T(n, b) by differentiating and setting to 0.
Or, just observe that we don’t want 2r >  n, and 
there’s no harm asymptotically in choosing r as 
large as possible subject to this constraint.

>

Choosing r = lg n implies T(n, b) = Θ(bn/lg n) .

• For numbers in the range from 0 to nd – 1, we 
have b = d lg n ⇒ radix sort runs in Θ(d n) time.



Conclusions

Example (32-bit numbers):
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least lg 2000 = 

11 passes.

In practice, radix sort is fast for large inputs, as 
well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays 
little locality of reference, and thus a well-tuned 
quicksort fares better on modern processors, 
which feature steep memory hierarchies.




