CS473-Algorithms I

Lecture 10

Dynamic Programming

Introduction

- An algorithm design paradigm like divide-and-conquer
- "Programming": A tabular method (not writing computer code)
- Divide-and-Conquer (DAC): subproblems are independent
- Dynamic Programming (DP): subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
- In solving problems with overlapping subproblems
- A DAC algorithm does redundant work
- Repeatedly solves common subproblems
- A DP algorithm solves each problem just once
- Saves its result in a table

Optimization Problems

- DP typically applied to optimization problems
- In an optimization problem
- There are many possible solutions (feasible solutions)
- Each solution has a value
- Want to find an optimal solution to the problem
- A solution with the optimal value (min or max value)
- Wrong to say "the" optimal solution to the problem
- There may be several solutions with the same optimal value

Development of a DP Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from the information computed in Step 3

Example: Matrix-chain Multiplication

- Input: a sequence (chain) $\left\langle\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}\right\rangle$ of n matrices
- Aim: compute the product $\mathrm{A}_{1} \cdot \mathrm{~A}_{2} \cdot \ldots \cdot \mathrm{~A}_{n}$
- A product of matrices is fully parenthesized if
- It is either a single matrix
- Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

$$
\begin{aligned}
& \triangleright\left(\mathrm{A}_{i}\left(\mathrm{~A}_{i+1} \mathrm{~A}_{i+2} \ldots \mathrm{~A}_{j}\right)\right) \\
& \triangleright\left(\left(\mathrm{A}_{i} \mathrm{~A}_{i+1} \mathrm{~A}_{i+2} \ldots \mathrm{~A}_{j-1}\right) \mathrm{A}_{j}\right) \\
& \triangleright\left(\left(\mathrm{A}_{i} \mathrm{~A}_{i+1} \mathrm{~A}_{i+2} \ldots \mathrm{~A}_{k}\right)\left(\mathrm{A}_{k+1} \mathrm{~A}_{k+2} \ldots \mathrm{~A}_{j}\right)\right) \quad \text { for } i \leq k<j
\end{aligned}
$$

- All parenthesizations yield the same product; matrix product is associative

Matrix-chain Multiplication: An Example Parenthesization

- Input: $\left\langle\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\rangle$
- 5 distinct ways of full parenthesization
$\left(\mathrm{A}_{1}\left(\mathrm{~A}_{2}\left(\mathrm{~A}_{3} \mathrm{~A}_{4}\right)\right)\right)$
$\left(\mathrm{A}_{1}\left(\left(\mathrm{~A}_{2} \mathrm{~A}_{3}\right) \mathrm{A}_{4}\right)\right)$
$\left(\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)\left(\mathrm{A}_{3} \mathrm{~A}_{4}\right)\right)$
$\left(\left(\mathrm{A}_{1}\left(\mathrm{~A}_{2} \mathrm{~A}_{3}\right)\right) \mathrm{A}_{4}\right)$
$\left(\left(\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right) \mathrm{A}_{3}\right) \mathrm{A}_{4}\right)$
- The way we parenthesize a chain of matrices can have a dramatic effect on the cost of computing the product

Cost of Multiplying two Matrices

Matrix has two attributes

- rows[A]: \# of rows
- cols[A]: \# of columns
\# of scalar mult-adds in
$\mathrm{C} \leftarrow \mathrm{AB}$ is
rows $[\mathrm{A}] \times \operatorname{cols}[\mathrm{B}] \times \operatorname{cols}[\mathrm{A}]$
A: $(p \times q)$
B: $(q \times r)\} C=A \cdot B$ is $p \times r$.
\# of mult-adds is $\mathrm{p} \times \mathrm{r} \times \mathrm{q}$

MATRIX-MULTIPLY(A, B)

if $\operatorname{cols}[\mathrm{A}] \neq$ rows $[\mathrm{B}]$ then
error("incompatible dimensions")
for $i \leftarrow 1$ to rows[A] do
for $j \leftarrow 1$ to cols[B] do

$$
\mathrm{C}[\mathrm{i}, \mathrm{j}] \leftarrow 0
$$

for $k \leftarrow 1$ to $\operatorname{cols}[\mathrm{A}]$ do
$\underset{C[i, j]+A[i, j]] \cdot B[k, j]}{\leftarrow}$
return C

Matrix-chain Multiplication Problem

Input: a chain $\left\langle\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}\right\rangle$ of n matrices, A_{i} is a $p_{i-1} \times p_{i}$ matrix Aim: fully parenthesize the product $\mathrm{A}_{1} \cdot \mathrm{~A}_{2} \cdot \ldots \cdot \mathrm{~A}_{n}$ such that the number of scalar mult-adds are minimized.

- Ex.: $\left\langle\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\rangle$ where $\mathrm{A}_{1}: 10 \times 100 ; \mathrm{A}_{2}: 100 \times 5 ; \mathrm{A}_{3}: 5 \times 50$

$$
(\underbrace{\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)}_{10 \times 5} \underbrace{\mathrm{~A}_{3}}_{5 \times 50}): ~ \underbrace{10 \times 100 \times 5}_{\mathrm{A}_{1} \mathrm{~A}_{2}}+\underbrace{10 \times 5 \times 50}_{\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right) \mathrm{A}_{3}}=7500
$$

$\underbrace{\left(\mathrm{A}_{1}\left(\mathrm{~A}_{2} \mathrm{~A}_{3}\right)\right.}_{10 \times 100}): \underbrace{100 \times 5 \times 50}_{100 \times 50}+\underbrace{10 \times 100 \times 50}_{\mathrm{A}_{2} \mathrm{~A}_{3}} \underbrace{}_{\mathrm{A}_{1}\left(\mathrm{~A}_{2} \mathrm{~A}_{3}\right)}=75000$
\Rightarrow First parenthesization yields 10 times faster computation.

Counting the Number of Parenthesizations

- Brute force approach: exhaustively check all parenthesizations
- P (n) : \# of parenthesizations of a sequence of n matrices
- We can split sequence between k th and $(k+1)$ st matrices for any $k=1,2, \ldots, n-1$, then parenthesize the two resulting sequences independently, i.e.,

$$
\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots \mathrm{~A}_{k}\right)\left(\mathrm{A}_{k+1} \mathrm{~A}_{k+2} \ldots \mathrm{~A}_{n}\right)
$$

- We obtain the recurrence

$$
\mathrm{P}(1)=1 \text { and } \mathrm{P}(n)=\sum_{k=1}^{n-1} \mathrm{P}(k) \mathrm{P}(n-k)
$$

Number of Parenthesizations: $\sum_{k=1}^{n-1} P(k) P(n-k)$

- The recurrence generates the sequence of Catalan Numbers
- Solution is $\mathrm{P}(n)=\mathrm{C}(n-1)$ where

$$
\mathrm{C}(n)=\frac{1}{n+1}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]=\Omega\left(4^{n} / n^{3 / 2}\right)
$$

- The number of solutions is exponential in n
- Therefore, brute force approach is a poor strategy

The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

- $\mathrm{A}_{i . . .}:$ matrix that results from evaluating the product
$\mathrm{A}_{i} \mathrm{~A}_{i+1} \mathrm{~A}_{i+2} \ldots \mathrm{~A}_{j}$
- An optimal parenthesization of the product $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{n}$
- Splits the product between A_{k} and A_{k+1}, for some $1 \leq k<n$ $\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots \mathrm{~A}_{k}\right) \cdot\left(\mathrm{A}_{k+1} \mathrm{~A}_{k+2} \ldots \mathrm{~A}_{n}\right)$
- i.e., first compute $\mathrm{A}_{1 . . k}$ and $\mathrm{A}_{k+1 . . n}$ and then multiply these two
- The cost of this optimal parenthesization

Cost of computing $\mathrm{A}_{1 . k}$

+ Cost of computing $\mathrm{A}_{k+1 . . n}$
+ Cost of multiplying $\mathrm{A}_{1 . . k} \cdot \mathrm{~A}_{k+1 . . n}$

Step 1: Characterize the Structure of an Optimal Solution

- Key observation: given optimal parenthesization
$\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots \mathrm{~A}_{k}\right) \cdot\left(\mathrm{A}_{k+1} \mathrm{~A}_{k+2} \ldots \mathrm{~A}_{n}\right)$
- Parenthesization of the subchain $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots \mathrm{~A}_{k}$
- Parenthesization of the subchain $\mathrm{A}_{k+1} \mathrm{~A}_{k+2} \ldots \mathrm{~A}_{n}$ should both be optimal
- Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
- i.e., optimal substructure within an optimal solution exists.

The Structure of an Optimal Parenthesization

Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems

- Subproblem: The problem of determining the minimum cost of computing $\mathrm{A}_{i . . j}$, i.e., parenthesization of $\mathrm{A}_{i} \mathrm{~A}_{i+1} \mathrm{~A}_{i+2} \ldots \mathrm{~A}_{j}$
- $m_{i j}$: min \# of scalar mult-adds needed to compute subchain $\mathrm{A}_{i . . j}$
- the value of an optimal solution is $m_{1 n}$
$-m_{i i}=0$, since subchain $\mathrm{A}_{i . . i}$ contains just one matrix; no multiplication at all
$-m_{i j}=$?

Step 2: Define Value of an Optimal Soln Recursively $\left(m_{i j}=\right.$? $)$

- For $i<j$, optimal parenthesization splits subchain $\mathrm{A}_{i . . j}$ as $\mathrm{A}_{i . . k}$ and $\mathrm{A}_{k+1 . . j}$ where $i \leq k<j$
optimal cost of computing $\mathrm{A}_{i . . k}: m_{i k}$
+ optimal cost of computing $\mathbf{A}_{k+1 . . j}: m_{k+1, j}$
+ cost of multiplying $\mathrm{A}_{i . . k} \mathrm{~A}_{k+1 . . j}: p_{i-1} \times p_{k} \times p_{j}$
($\mathrm{A}_{i . . k}$ is a $p_{i-1} \times p_{k}$ matrix and $\mathrm{A}_{k+1 . . j}$ is a $p_{k} \times p_{j}$ matrix)

$$
\Rightarrow m_{i j}=m_{i k}+m_{k+1, j}+p_{i-1} \times p_{k} \times p_{j}
$$

- The equation assumes we know the value of k, but we do not

Step 2: Recursive Equation for $m_{i j}$

- $m_{i j}=m_{i k}+m_{k+1, j}+p_{i-1} \times p_{k} \times p_{j}$
- We do not know k, but there are $j-i$ possible values for $k ; \quad k=i, i+1, i+2, \ldots, j-1$
- Since optimal parenthesization must be one of these k values we need to check them all to find the best

$$
m_{i j}=\left\{\begin{array}{l}
0 \text { if } i=j \\
\underset{i \leq k<j}{\operatorname{MIN}\left\{m_{i k}+m_{k+1, j}+p_{i-1} p_{k} p_{j}\right\} \text { if } i<j}
\end{array}\right.
$$

Step 2: $m_{i j}=\operatorname{MIN}\left\{m_{i k}+m_{k+1, j}+p_{i-1} p_{k} p_{j}\right\}$

- The $m_{i j}$ values give the costs of optimal solutions to subproblems
- In order to keep track of how to construct an optimal solution
- Define $S_{i j}$ to be the value of k which yields the optimal split of the subchain $\mathrm{A}_{i . j}$
That is, $S_{i j}=k$ such that

$$
m_{i j}=m_{i k}+m_{k+1, j}+p_{i-1} p_{k} p_{j} \quad \text { holds }
$$

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

- We have relatively few subproblems
- one problem for each choice of i and j satisfying $1 \leq i \leq j \leq n$
- total $n+(n-1)+\ldots+2+1=\frac{1}{2} n(n+1)=\Theta\left(n^{2}\right)$ subproblems
- We can write a recursive algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming

Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

- matrix A_{i} has dimensions $p_{i-1} \times p_{i}$ for $i=1,2, \ldots, n$
- the input is a sequence $\left\langle p_{0}, p_{1}, \ldots, p_{n}\right\rangle$ where length $[p]=n+1$

Procedure uses the following auxiliary tables:
$-m[1 \ldots n, 1 \ldots n]$: for storing the $m[i, j]$ costs
$-s[1 \ldots n, 1 \ldots n]$: records which index of k achieved the optimal cost in computing $m[i, j]$

Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)

$n \leftarrow$ length $[p]-1$
for $i \leftarrow 1$ to n do
$m[i, i] \leftarrow 0$
for $\ell \leftarrow 2$ to n do

$$
\text { for } i \leftarrow 1 \text { to } n-\ell+1 \text { do }
$$

$$
j \leftarrow i+\ell-1
$$

$$
m[i, j] \leftarrow \infty
$$

$$
\text { for } k \leftarrow i \text { to } j-1 \text { do }
$$

$$
\begin{aligned}
& q \leftarrow m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j} \\
& \text { if } q<m[i, j] \text { then } \\
& \quad m[i, j] \leftarrow q \\
& \quad s[i, j] \leftarrow k
\end{aligned}
$$

return m and s

Algorithm for Computing the Optimal Costs

- The algorithm first computes
$m[i, i] \leftarrow 0$ for $i=1,2, \ldots, n$ min costs for all chains of length 1
- Then, for $\ell=2,3, \ldots, n$ computes
$m[i, i+\ell-1]$ for $i=1, \ldots, n-\ell+1 \mathrm{~min}$ costs for all chains of length ℓ
- For each value of $\ell=2,3, \ldots, n$,
$m[i, i+\ell-1]$ depends only on table entries $m[i, k] \& m[k+1, i+\ell-1]$ for $i \leq k<i+\ell-1$, which are already computed

Algorithm for Computing the Optimal Costs

Table access pattern in computing $m[i, j]$ s for $\ell=j-i+1$

$$
\begin{aligned}
& \text { for } k \leftarrow i \text { to } j-1 \text { do } \\
& \qquad \quad q \leftarrow m[i, k]+m[k+1, j]+p_{i-1} p_{k} \\
& \quad p_{j}
\end{aligned}
$$

Table access pattern in computing $m[i, j]$ s for $\ell=j-i+1$

Table access pattern in computing $m[i, j]$ s for $\ell=j-i+1$

Table access pattern in computing $m[i, j]$ s for $\ell=j-i+1$

Table access pattern in computing $m[i, j]$ s for $\ell=j-i+1$

Table reference pattern for $m[i, j](1 \leq i \leq j \leq n)$

Table reference pattern for $m[i, j](1 \leq i \leq j \leq n)$

$R(i, j)=$ \# of times that $m[i, j]$ is referenced in computing other entries

$$
\begin{aligned}
R(i, j) & =(n-j)+(i-1) \\
& =(n-1)-(j-i)
\end{aligned}
$$

The total \# of references for the entire table is

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} R(i, j) \frac{n^{3}-n}{3}
$$

Constructing an Optimal Solution

- MATRIX-CHAIN-ORDER determines the optimal \# of scalar mults/adds
- needed to compute a matrix-chain product
- it does not directly show how to multiply the matrices
- That is,
- it determines the cost of the optimal solution(s)
- it does not show how to obtain an optimal solution
- Each entry $s[i, j]$ records the value of k such that optimal parenthesization of $\mathrm{A}_{i} \ldots \mathrm{~A}_{j}$ splits the product between $\mathrm{A}_{k} \& \mathrm{~A}_{k+1}$
- We know that the final matrix multiplication in computing $\mathrm{A}_{1 \ldots n}$ optimally is $\mathrm{A}_{1 \ldots . .[1, n]} \times \mathrm{A}_{s[1, n]+1, n}$

Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively
Given:

- the chain of matrices $\mathrm{A}=\left\langle\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{n}\right\rangle$
- the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product $\mathrm{A}_{i . ., j}$
MATRIX-CHAIN-MULTIPLY(A, s, i, j)
if $j>i$ then
X \leftarrow MATRIX-CHAIN-MULTIPLY (A, $s, i, s[i, j])$
$\mathrm{Y} \leftarrow$ MATRIX-CHAIN-MULTIPLY $(A, s, s[i, j]+1, j)$
return MATRIX-MUTIPLY(X, Y)
else
return A_{i}
Invocation: MATRIX-CHAIN-MULTIPLY(A, $s, 1, n$)

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

Elements of Dynamic Programming

- When should we look for a DP solution to an optimization problem?
- Two key ingredients for the problem
- Optimal substructure
- Overlapping subproblems

DP Hallmark \#1

Optimal Substructure

- A problem exhibits optimal substructure
- if an optimal solution to a problem contains within it optimal solutions to subproblems
- Example: matrix-chain-multiplication

Optimal parenthesization of $A_{1} A_{2} \ldots A_{n}$ that splits the product between A_{k} and A_{k+1},
contains within it optimal soln's to the problems of parenthesizing $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{k}$ and $\mathrm{A}_{k+1} \mathrm{~A}_{k+2} \ldots \mathrm{~A}_{n}$

Optimal Substructure

- The optimal substructure of a problem often suggests a suitable space of subproblems to which DP can be applied
- Typically, there may be several classes of subproblems that might be considered natural
- Example: matrix-chain-multiplication
- All subchains of the input chain

We can choose an arbitrary sequence of matrices from the input chain

- However, DP based on this space solves many more subproblems

Optimal Substructure

Finding a suitable space of subproblems

- Iterate on subproblem instances
- Example: matrix-chain-multiplication
- Iterate and look at the structure of optimal soln's to subproblems, sub-subproblems, and so forth
- Discover that all subproblems consists of subchains of $\left\langle\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}\right\rangle$
- Thus, the set of chains of the form

$$
\left\langle\mathrm{A}_{i}, \mathrm{~A}_{i+1}, \ldots, \mathrm{~A}_{j}\right\rangle \text { for } 1 \leq i \leq j \leq n
$$

- Makes a natural and reasonable space of subproblems

DP Hallmark \#2

Overlapping Subproblems

- Total number of distinct subproblems should be polynomial in the input size
- When a recursive algorithm revisits the same problem over and over again we say that the optimization problem has overlapping subproblems

Overlapping Subproblems

- DP algorithms typically take advantage of overlapping subproblems
- by solving each problem once
- then storing the solutions in a table where it can be looked up when needed
- using constant time per lookup

Overlapping Subproblems

Recursive matrix-chain order

$\mathbf{R M C}(p, i, j)$

if $i=j$ then return 0

$$
\begin{aligned}
& m[i, j] \leftarrow \infty \\
& \text { for } k \leftarrow i \text { to } j-1 \text { do }
\end{aligned}
$$

$$
\begin{aligned}
& q \leftarrow \operatorname{RMC}(p, i, k)+\operatorname{RMC}(p, k+1, j)+p_{i-1} p_{k} p_{j} \\
& \text { if } q<m[i, j] \text { then }
\end{aligned}
$$

$$
m[i, j] \leftarrow q
$$

return $m[i, j]$

Recursive Matrix-chain Order

Recursion tree for $\operatorname{RMC}(p, 1,4)$

Nodes are labeled with i and j values

Running Time of RMC

$\mathrm{T}(1) \geq 1$
$\mathrm{T}(n) \geq 1+\sum_{k=1}^{n-1}(\mathrm{~T}(k)+\mathrm{T}(n-k)+1)$ for $n>1$

- For $i=1,2, \ldots, n$ each term $\mathrm{T}(i)$ appears twice
- Once as $\mathrm{T}(k)$, and once as $\mathrm{T}(n-k)$
- Collect $n-11$'s in the summation together with the front 1

$$
\mathrm{T}(n) \geq 2 \sum_{i=1}^{n-1} \mathrm{~T}(i)+n
$$

- Prove that $\mathrm{T}(n)=\Omega\left(2^{n}\right)$ using the substitution method

Running Time of RMC: Prove that $\mathrm{T}(n)=\Omega\left(2^{n}\right)$

- Try to show that $\mathrm{T}(n) \geq 2^{n-1}$ (by substitution) Base case: $T(1) \geq 1=2^{0}=2^{1-1}$ for $n=1$

IH: $\mathrm{T}(i) \geq 2^{i-1}$ for all $i=1,2, \ldots, n-1$ and $n \geq 2$
$\mathrm{T}(n) \geq 2 \sum_{i=1}^{n} 2^{1-1}+n$
$=2 \sum_{i=0}^{n} 2^{i}+n=2\left(2^{n-1}-1\right)+n$
$=2^{n-1}+\left(2^{n-1}-2+n\right)$
$\Rightarrow \mathrm{T}(n) \geq 2^{n-1} \quad$ Q.E.D.

Running Time of RMC: $\mathrm{T}(n) \geq 2^{n-1}$

Whenever

- a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly
- the total number of different subproblems is small it is a good idea to see if DP can be applied

Memoization

- Offers the efficiency of the usual DP approach while maintaining top-down strategy
- Idea is to memoize the natural, but inefficient, recursive algorithm

Memoized Recursive Algorithm

- Maintains an entry in a table for the soln to each subproblem
- Each table entry contains a special value to indicate that the entry has yet to be filled in
- When the subproblem is first encountered its solution is computed and then stored in the table
- Each subsequent time that the subproblem encountered the value stored in the table is simply looked up and returned

Memoized Recursive Algorithm

- The approach assumes that
- The set of all possible subproblem parameters are known
- The relation between the table positions and subproblems is established
- Another approach is to memoize
- by using hashing with subproblem parameters as key

Memoized Recursive Matrix-chain Order

$\operatorname{Lookup} C(p, i, j)$
if $m[i, j]=\infty$ then
if $i=j$ then

$$
m[i, j] \leftarrow \mathbf{0}
$$

else
for $k \leftarrow i$ to $j-1$ do

$$
\begin{aligned}
& q \leftarrow \operatorname{LookupC}(p, i, k)+\operatorname{LookupC}(p, k+1, j)+p_{i-1} p_{k} p_{j} \\
& \text { if } q<m[i, j] \text { then }
\end{aligned}
$$

MemoizedMatrixChain(p)

$n \leftarrow$ length $[p]-1$
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
m[i, j] \leftarrow \infty
$$

return LookupC $(p, 1, n)$

$$
m[i, j] \leftarrow q
$$

return $m[i, j]$

Elements of Dynamic Programming: Summary

- Matrix-chain multiplication can be solved in $\mathrm{O}\left(n^{3}\right)$ time
- by either a top-down memoized recursive algorithm
- or a bottom-up dynamic programming algorithm
- Both methods exploit the overlapping subproblems property
- There are only $\Theta\left(n^{2}\right)$ different subproblems in total
- Both methods compute the soln to each problem once
- Without memoization the natural recursive algorithm runs in exponential time since subproblems are solved repeatedly

Elements of Dynamic Programming: Summary

In general practice

- If all subproblems must be solved at once
- a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a constant factor
because, bottom-up DP algorithm
- Has no overhead for recursion
- Less overhead for maintaining the table
- DP: Regular pattern of table accesses can be exploited to reduce the time and/or space requirements even further
- Memoized: If some problems need not be solved at all, it has the advantage of avoiding solutions to those subproblems

Longest Common Subsequence

A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out

Formal definition: Given a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$, sequence $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ is a subsequence of X if \exists a strictly increasing sequence $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle$ of indices of X such that $x_{i}=z_{j}$ for all $j=1,2, \ldots, k$, where $1 \leq k \leq m$
Example: $Z=\langle\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{B}\rangle$ is a subsequence of $X=\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}}, \stackrel{7}{\mathrm{~B}}\rangle$ with the index sequence $\left\langle i_{1}, i_{2}, i_{3}, i_{4}\right\rangle=\langle 2,3,5,7\rangle$

Longest Common Subsequence (LCS)

Given two sequences $X \& Y, Z$ is a common subsequence of $X \& Y$

Example: $X=<\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{A}, \mathrm{B}\rangle$ and $Y=\langle\mathrm{B}, \mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{A}\rangle$ Sequence $<\mathrm{B}, \mathrm{C}, \mathrm{A}>$ is a common subsequence of X and Y. However, <B, C, A> is not a longest common subsequence (LCS) of X and Y.
$<\mathrm{B}, \mathrm{C}, \mathrm{B}, \mathrm{A}>$ is an LCS of X and Y.
Longest common subsequence (LCS):
Given two sequences $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ We wish to find the LCS of $X \& Y$

Characterizing a Longest Common Subsequence

A brute force approach

- Enumerate all subsequences of X
- Check each subsequence to see if it is also a subsequence of Y meanwhile keeping track of the LCS found
- Each subsequence of X corresponds to a subset of the index set $\{1,2, \ldots, m\}$ of X
- So, there are 2^{m} subsequences of X
- Hence, this approach requires exponential time

Characterizing a Longest Common Subsequence

Definition: The i-th prefix X_{i} of X for $i=0,1, \ldots, m$ is

$$
X_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle
$$

Example: Given $X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},_{\mathrm{A}}^{\mathrm{B}}>\right.$

$$
X_{4}=\langle\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{~B}\rangle \text { and } X_{\varnothing}=\text { empty sequence }
$$

Theorem: (Optimal substructure of an LCS)
Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ are given
Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y

1. If $x_{m}=y_{n}$ then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
2. If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$ then Z is an LCS of X_{m-1} and Y
3. If $x_{m} \neq y_{n}$ and $z_{k} \neq y_{n}$ then Z is an LCS of X and Y_{n-1}

Optimal Substructure Theorem (case 1)

If $x_{m}=y_{n}$ then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

Optimal Substructure Theorem (case 2)

If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$ then Z is an LCS of X_{m-1} and Y

Optimal Substructure Theorem (case 3)

If $x_{m} \neq y_{n}$ and $z_{k} \neq y_{n}$ then Z is an LCS of X and Y_{n-1}

Proof of Optimal Substructure Theorem (case 1)

$$
\text { If } x_{m}=y_{n} \text { then } z_{k}=x_{m}=y_{n} \text { and } Z_{k-1} \text { is an LCS of } X_{m-1} \text { and } Y_{n-1}
$$

Proof: If $z_{k} \neq x_{m}=y_{n}$ then
we can append $x_{m}=y_{n}$ to Z to obtain a common subsequence of length $k+1 \Rightarrow$ contradiction
Thus, we must have $z_{k}=x_{m}=y_{n}$
Hence, the prefix Z_{k-1} is a length- $(k-1) \mathrm{CS}$ of X_{m-1} and Y_{n-1}
We have to show that Z_{k-1} is in fact an LCS of X_{m-1} and Y_{n-1}
Proof by contradiction:
Assume that \exists a CS W of X_{m-1} and Y_{n-1} with $|W|=k$
Then appending $x_{m}=y_{n}$ to W produces a CS of length $k+1$

Proof of Optimal Substructure Theorem (case 2)

If $x_{m} \neq y_{n}$ and $z_{k} \neq x_{m}$ then Z is an LCS of X_{m-1} and Y
Proof: If $z_{k} \neq x_{m}$ then Z is a CS of X_{m-1} and Y_{n}
We have to show that Z is in fact an LCS of X_{m-1} and Y_{n}
(Proof by contradiction)
Assume that \exists a CS W of X_{m-1} and Y_{n} with $|W|>k$
Then W would also be a CS of X and Y
Contradiction to the assumption that
Z is an LCS of X and Y with $|Z|=k$

Case 3: Dual of the proof for (case 2)

Longest Common Subsequence Algorithm

$\operatorname{LCS}(X, Y)$
$m \leftarrow$ length $[X]$
$n \leftarrow$ length $[Y]$
if $x_{m}=y_{n}$ then
$Z \leftarrow \operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right) \quad \triangleright$ solve one subproblem return $\left\langle Z, x_{m}=y_{n}\right\rangle \quad \triangleright$ append $x_{m}=y_{n}$ to Z
else

$$
\left.\begin{array}{l}
Z^{\prime} \leftarrow \operatorname{LCS}\left(X_{m-1}, Y\right) \\
Z^{\prime \prime} \leftarrow \operatorname{LCS}\left(X, Y_{n-1}\right)
\end{array}\right\} \triangleright \text { solve two subproblems }
$$ return longer of Z^{\prime} and $Z^{\prime \prime}$

A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine
if $x_{m}=y_{n}$ then
we must solve the subproblem of finding an LCS of $X_{m-1} \& Y_{n-1}$ appending $x_{m}=y_{n}$ to this LCS yields an LCS of $X \& Y$
else
we must solve two subproblems

- finding an LCS of $X_{m-1} \& Y$
- finding an LCS of $X \& Y_{n-1}$
longer of these two LCSs is an LCS of $X \& Y$
endif

A Recursive Solution to Subproblems

Overlapping-subproblems property

- finding an LCS to $X_{m-1} \& Y$ and an LCS to $X \& Y_{n-1}$ has the subsubproblem of finding an LCS to $X_{m-1} \& Y_{n-1}$
- many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution
$c[i, j]$: length of an LCS of the prefix subsequences $X_{i} \& Y_{j}$
If either $i=0$ or $j=0$, one of the prefix sequences has length 0 , so the LCS has length 0
$c[i, j]=\left\{\begin{array}{l}0 \\ c[i-1, j-1]+1 \\ \max \{c[i, j-1], c[i-1, j]\}\end{array}\right.$

$$
\begin{aligned}
& \text { if } i=0 \text { or } j=0 \\
& \text { if } i, j>0 \text { and } x_{i}=y_{j} \\
& \text { if } i, j>0 \text { and } x_{i} \neq y_{j}
\end{aligned}
$$

Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm based on the given recurrence
However, there are only $\Theta(\mathrm{mn})$ distinct subproblems
Therefore, we can use dynamic programming

Data structures:
Table $c[0 \ldots m, 0 \ldots n]$ is used to store $c[i, j]$ values
Entries of this table are computed in row-major order
Table $b[1 \ldots m, 1 \ldots n]$ is maintained to simplify the construction of an optimal solution
$b[i, j]$: points to the table entry corresponding to the optimal subproblem solution chosen when computing $c[i, j]$

Computing the Length of an LCS

```
LCS-LENGTH \((X, Y)\)
\(m \leftarrow\) length \([X] ; n \leftarrow\) length \([Y]\)
for \(i \leftarrow 0\) to \(m\) do \(c[i, 0] \leftarrow 0\)
for \(j \leftarrow 0\) to \(n\) do \(c[0, j] \leftarrow 0\)
for \(i \leftarrow 1\) to \(m\) do
for \(j \leftarrow 1\) to \(n\) do
if \(x_{i}=y_{j}\) then
\(c[i, j] \leftarrow c[i-1, j-1]+1\)
\(b[i, j] \leftarrow\) "「"
else if \(c[i-1, j] \geq c[i, j-1]\)
\(c[i, j] \leftarrow c[i-1, j]\)
\(b[i, j] \leftarrow " \uparrow "\)
else
\(c[i, j] \leftarrow c[i, j-1]\)
\(b[i, j] \leftarrow\) "ヶ"
```


Computing the Length of an LCS

Operation of LCS-LENGTH

 on the sequences$X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}}\right\rangle$
$Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle$

${ }^{j}$		1	2			B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0						
2 B	0						
3 C	0						
4 B	0						
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS-LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}}{ }^{\prime}\right\rangle \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

${ }^{j}$					A	5 B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个 0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 0 \\ & \hline \end{aligned}$	${ }_{1}$	$\leftarrow 1$	κ_{1}
2 B	0						
3 C	0						
4 B	0						
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS-LENGTH

 on the sequences$$
\begin{aligned}
& X=\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}}, \stackrel{7}{\mathrm{~B}}\rangle \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

${ }^{j}$		1	2	3 C	4	5	6
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个 0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	Σ_{1}	$\leftarrow 1$	${ }^{\kappa}$
2 B	0	${ }^{\kappa}$	$\leftarrow 1$	$\leftarrow 1$	个 1	$\begin{array}{r} \kappa_{2} \\ \hline \end{array}$	$\leftarrow 2$
3 C	0						
4 B	0						
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}}, \stackrel{7}{\mathrm{~B}}\rangle \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

${ }^{j}$	$\begin{aligned} & 0 \\ & y_{i} \end{aligned}$	1	2 D	$\stackrel{3}{\text { C }}$	A	5 B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个 0	个 0	个 0	Σ_{1}	$\leftarrow 1$	${ }^{\kappa}$
2 B	0	${ }^{\kappa}$	$\leftarrow 1$	$\leftarrow 1$	个 1	$\begin{array}{r} \kappa_{2} \\ \hline \end{array}$	$\leftarrow 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{gathered} \uparrow \\ 1 \end{gathered}$	$\begin{aligned} & \kappa_{2} \\ & \hline \end{aligned}$	$\leftarrow 2$	个 2	个 2
4 B	0						
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS-LENGTH

 on the sequences$$
\begin{aligned}
& X=\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}}, \stackrel{7}{\mathrm{~B}}\rangle \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

j		$\begin{aligned} & 1 \\ & \mathrm{~B} \\ & \hline \end{aligned}$	2	3 C	4 A	5	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	$\begin{aligned} & \uparrow \\ & 0 \\ & \hline \end{aligned}$	个 0	$\begin{aligned} & \uparrow \\ & 0 \\ & \hline \end{aligned}$	κ_{1}	$\leftarrow 1$	${ }^{\wedge} \times$
2 B	0	${ }^{\kappa}$	$\leqslant 1$	$\leqslant 1$	个 1	${ }^{\text {® }}$	$\leftarrow 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{gathered} \uparrow \\ 1 \end{gathered}$	κ_{2}	$\leftarrow 2$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$
4 B	0	κ_{1}					
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}} \mathrm{~B}^{\prime}\right. \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

	$\begin{gathered} 0 \\ y_{i} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~B} \\ & \hline \end{aligned}$	2 D	3	4 A	5 B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	个 0	个 0	\wedge_{1}	$\leqslant 1$	${ }^{\wedge}$
2 B	0	$\begin{array}{\|r\|} \hline \\ \hline \end{array}$	$\leqslant 1$	$\leqslant 1$	个 1	$\begin{array}{\|c} \kappa_{2} \\ 2 \end{array}$	<2
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	Ω_{2}	$\leftarrow 2$	个 2	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$
4 B	0	${ }^{\wedge}$	个 1				
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}} \mathrm{~B}^{\prime}\right. \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

${ }^{j}$		1 B	2 D	3 C	A	5 B	6
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	个 0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	\wedge_{1}	$\leqslant 1$	${ }^{\wedge} 1$
2 B	0	${ }^{\wedge}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个 1	$\stackrel{\mid}{\wedge}$	$\leqslant 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{array}{r} \uparrow \\ 1 \\ \hline \end{array}$	κ_{2}	$\leftarrow 2$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$
4 B	0	$\begin{array}{\|l} \wedge_{1} \\ \hline \end{array}$	个 1	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$			
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}} \mathrm{~B}^{\prime}\right. \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

		$\begin{aligned} & 1 \\ & \mathrm{~B} \\ & \hline \end{aligned}$	2 D	3 C	4 A	B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	$\begin{aligned} & \uparrow \\ & 0 \\ & \hline \end{aligned}$	个 0	$\begin{aligned} & \uparrow \\ & 0 \\ & \hline \end{aligned}$	\AA_{1}	$\leqslant 1$	$\begin{array}{\|c} \\ \hline \end{array}$
2 B	0	$\begin{array}{\|c} \kappa_{1} \\ \hline \end{array}$	$\leftarrow 1$	$\leftarrow 1$	个 1	κ_{2}	$\leqslant 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \uparrow \\ 1 \\ \hline \end{gathered}$	Ω_{2}	$\leftarrow 2$	个 2	个 2
4 B	0	${ }^{\wedge}$	个 1	个 2	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$		
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}} \mathrm{~B}^{\prime}\right. \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

${ }^{j}$		1 B	2 D	3	4 A	5	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	个 0	个 0	Σ_{1}	$\leftarrow 1$	${ }^{\wedge}$
2 B	0	κ_{1}	$\leqslant 1$	$\leftarrow 1$	个 1	Γ_{2}	$\leftarrow 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \kappa_{2} \\ & \hline \end{aligned}$	$\leqslant 2$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$
4 B	0	$\begin{array}{\|l} \kappa_{1} \\ \hline \end{array}$	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	个 2	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|r} \kappa_{3} \\ \hline \end{array}$	
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}} \mathrm{~B}^{\prime}\right. \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

${ }^{j}$	$\begin{gathered} 0 \\ y_{i} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~B} \\ & \hline \end{aligned}$	2 D	3 C	4 A	$\begin{array}{r}5 \\ \text { B } \\ \hline\end{array}$	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个 0	个 0	个 0	Ω_{1}	$\leqslant 1$	${ }^{\wedge} \times 1$
2 B	0	${ }^{\wedge}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个 1	$\begin{array}{\|c} \hline \\ \hline \end{array}$	$\leqslant 2$
3 C	0	个 1	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	Ω_{2}	$\leqslant 2$	个 2	个 2
4 B	0	$\begin{array}{\|r} \wedge \\ \hline \end{array}$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	个 2	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	Σ_{3}	$\leftarrow 3$
5 D	0						
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}} \mathrm{~B}^{\prime}\right. \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

j	0 y_{i}	1	2 D	3 C	4 A	5 B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个	个 0	个	Σ_{1}	$\leqslant 1$	κ_{1}
2 B	0	κ_{1}	$\leftarrow 1$	$\leftarrow 1$	个 1	κ_{2}	$\leftarrow 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	र 2	$\leftarrow 2$	个 2	个 2
4 B	0	κ_{1}	个 1	个 2	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	Γ_{3}	$\leftarrow 3$
5 D	0	\uparrow	Σ_{2}	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{gathered} \uparrow \\ 3 \end{gathered}$	$\begin{aligned} & \uparrow \\ & 3 \end{aligned}$
6 A	0						
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH

 on the sequences$$
\begin{aligned}
& X=\left\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}},{ }_{\mathrm{B}}^{\mathrm{B}}\right\rangle \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

j	0 y_{j}	1	2 D	3 C	4	5 B	6
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个	个 0	个	κ_{1}	$\leftarrow 1$	${ }^{\wedge}$
2 B	0	$\begin{array}{r} \kappa \\ \hline \end{array}$	$\leftarrow 1$	$\leftarrow 1$	个 1	κ_{2}	$\leftarrow 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \uparrow \\ 1 \\ \hline \end{gathered}$	К	$\leftarrow 2$	个 2	个 2
4 B	0	$\begin{array}{r} \kappa_{1} \\ 1 \end{array}$	个 1	个 2	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	κ_{3}	$\leftarrow 3$
5 D	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	κ_{2}	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	个 3
6 A	0	个 1	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	个 2	Γ_{3}	个 3	${ }^{\wedge}$
7 B	0						

Computing the Length of an LCS

Operation of LCS－LENGTH on the sequences

$$
\begin{aligned}
& X=\langle\stackrel{1}{\mathrm{~A}}, \stackrel{2}{\mathrm{~B}}, \stackrel{3}{\mathrm{C}}, \stackrel{4}{\mathrm{~B}}, \stackrel{5}{\mathrm{D}}, \stackrel{6}{\mathrm{~A}}, \stackrel{7}{\mathrm{~B}}\rangle^{\prime} \\
& Y=\langle\underset{1}{\mathrm{~B}}, \underset{2}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

Running－time $=\mathrm{O}(m n)$ since each table entry takes $\mathrm{O}(1)$ time to compute LCS of $X \& Y=\langle\mathrm{B}, \mathrm{C}, \mathrm{B}, \mathrm{A}\rangle$

j	y_{i}	B	2	3 C	4 A	5 B	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	个	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	κ_{1}	$\leftarrow 1$	κ_{1}
2 B	0	${ }^{\mid}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个 1	κ_{2}	$\leftarrow 2$
3 C	0	\uparrow	$\begin{gathered} \uparrow \\ 1 \end{gathered}$	「 2	$\leftarrow 2$	个	个 2
4 B	0	${ }^{\kappa}$	$\begin{gathered} \uparrow \\ 1 \end{gathered}$	$\begin{gathered} \uparrow \\ 2 \end{gathered}$	个 2	下	$\leftarrow 3$
5 D	0	\uparrow	κ_{2}	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \end{aligned}$
6 A	0	个 1	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	个 2	$\begin{array}{r} \kappa_{3} \\ \hline \end{array}$	个 3	「 4
7 B	0	${ }^{\kappa}$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	个 3	$\begin{aligned} & \uparrow \\ & 3 \end{aligned}$	К 4	个 4

Computing the Length of an LCS

Operation of LCS－LENGTH on the sequences

$$
\begin{aligned}
& X=\left\langle\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}, \stackrel{7}{\mathrm{C}}, \mathrm{~B}, \mathrm{D}, \mathrm{~A}, \mathrm{~B}\right\rangle \\
& Y \\
& =\langle\mathrm{B}, \underset{1}{\mathrm{D}}, \underset{3}{\mathrm{C}}, \underset{4}{\mathrm{~A}}, \underset{5}{\mathrm{~B}}, \underset{6}{\mathrm{~A}}\rangle
\end{aligned}
$$

Running－time $=\mathrm{O}(m n)$ since each table entry takes $\mathrm{O}(1)$ time to compute LCS of $X \& Y=\langle\mathrm{B}, \mathrm{C}, \mathrm{B}, \mathrm{A}\rangle$

${ }^{j}$	$\begin{gathered} 0 \\ y_{j} \end{gathered}$	$\begin{aligned} & 1 \\ & \text { B } \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{D} \\ & \hline \hline \end{aligned}$	3 C	4 A	5	6 A
$0 x_{i}$	0	0	0	0	0	0	0
1 A	0	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 0 \end{aligned}$	κ_{1}	$\leftarrow 1$	Γ 1
2 B	0	κ_{1}	$\leftarrow 1$	$\leftarrow 1$	个 1	κ_{2}	$\leftarrow 2$
3 C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 2 \end{aligned}$	＜2	个 2	个 2
4 B	0	$\begin{array}{r} 1 \\ \hline \end{array}$	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	个 2	κ_{3}	$\leftarrow 3$
5 D	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	N_{2}	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	\uparrow	\uparrow 3
6 A	0	$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|r} \wedge \\ \hline \end{array}$	$\begin{array}{r}\text { 个 } \\ \\ \hline\end{array}$	「 4
7 B	0	${ }_{1}$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$		\uparrow 4

Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly construct an LCS of $X \& Y$

Begin at $b[m, n]$ and trace through the table following arrows

Whenever you encounter a " \ltimes " in entry $b[i, j]$ it implies that $x_{i}=y_{j}$ is an element of LCS

The elements of LCS are encountered in reverse order

Constructing an LCS

PRINT-LCS (b, X, i, j)
if $i=0$ or $j=0$ then return

The initial invocation:
PRINT-LCS(b, X, length $[X]$, length $[Y]$)
if $b[i, j]=$ " κ " then PRINT-LCS $(b, X, i-1, j-1)$ print x_{i} else if $b[i, j]=$ " \uparrow " then PRINT-LCS $(b, X, i-1, j)$
else

```
PRINT-LCS(b, X, i,j-1)
```

The recursive procedure PRINT-LCS prints out LCS in proper order
This procedure takes $\mathrm{O}(m+n)$ time
since at least one of i and j is determined in each stage of the recursion

Longest Common Subsequence

Improving the code:

- we can eliminate the b table altogether
- each $c[i, j]$ entry depends only on 3 other c table entries

$$
c[i-1, j-1], c[i-1, j] \text { and } c[i, j-1]
$$

Given the value of $c[i, j]$

- we can determine in $\mathrm{O}(1)$ time which of these 3 values was used to compute $c[i, j]$ without inspecting table b
- we save $\Theta(m n)$ space by this method
- however, space requirement is still $\Theta(m n)$ since we need $\Theta(m n)$ space for the c table anyway
We can reduce the asymptotic space requirement for LCS-LENGTH
- since it needs only two rows of table c at a time
- the row being computed and the previous row

This improvement works if we only need the length of an LCS

