CS473-Algorithms I

Lecture 10

Dynamic Programming

Introduction

- An algorithm design paradigm like divide-and-conquer
- "Programming": A tabular method (not writing computer code)
- Divide-and-Conquer (DAC): subproblems are independent
- Dynamic Programming (DP): subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
 - In solving problems with overlapping subproblems
 - A DAC algorithm does redundant work
 - Repeatedly solves common subproblems
 - A DP algorithm solves each problem just once
 - Saves its result in a table

Optimization Problems

- DP typically applied to optimization problems
- In an optimization problem
 - There are many possible solutions (feasible solutions)
 - Each solution has a value
 - Want to find an optimal solution to the problem
 - A solution with the optimal value (min or max value)
 - Wrong to say "the" optimal solution to the problem
 - There may be several solutions with the same optimal value

Development of a DP Algorithm

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from the information computed in Step 3

Example: Matrix-chain Multiplication

- Input: a sequence (chain) $\langle A_1, A_2, \dots, A_n \rangle$ of *n* matrices
- Aim: compute the product $A_1 \cdot A_2 \cdot ... \cdot A_n$
- A product of matrices is fully parenthesized if
 - It is either a single matrix
 - Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

$$\triangleright (A_{i}(A_{i+1}A_{i+2} ... A_{j}))$$

$$\triangleright ((A_{i}A_{i+1}A_{i+2} ... A_{j-1})A_{j})$$

$$\triangleright ((A_{i}A_{i+1}A_{i+2} ... A_{k})(A_{k+1}A_{k+2} ... A_{j}))$$
 for $i \le k < j$

- All parenthesizations yield the same product; matrix product is associative

Matrix-chain Multiplication: An Example Parenthesization

- Input: $\langle A_1, A_2, A_3, A_4 \rangle$
- 5 distinct ways of full parenthesization

$$(A_{1}(A_{2}(A_{3}A_{4})))$$

$$(A_{1}((A_{2}A_{3})A_{4}))$$

$$((A_{1}A_{2})(A_{3}A_{4}))$$

$$((A_{1}(A_{2}A_{3}))A_{4})$$

$$(((A_{1}A_{2})A_{3})A_{4})$$

• The way we parenthesize a chain of matrices can have a dramatic effect on the cost of computing the product

Cost of Multiplying two Matrices

Matrix has two attributes

- rows[A]: # of rows
- cols[A]: # of columns

of scalar mult-adds in C ← AB is rows[A]×cols[B]×cols[A]

$$A: (p \times q)$$
B: $(q \times r)$

$$C = A \cdot B \text{ is } p \times r.$$

of mult-adds is $p \times r \times q$

MATRIX-MULTIPLY(A, B)

```
if cols[A]≠rows[B] then
    error("incompatible dimensions")
for i \leftarrow 1 to rows[A] do
    for j \leftarrow 1 to cols[B] do
       C[i,j] \leftarrow 0
       for k \leftarrow 1 to cols[A] do
C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]
return C
```

Matrix-chain Multiplication Problem

Input: a chain $\langle A_1, A_2, \dots, A_n \rangle$ of *n* matrices, A_i is a $p_{i-1} \times p_i$ matrix

Aim: fully parenthesize the product $A_1 \cdot A_2 \cdot ... \cdot A_n$ such that the number of scalar mult-adds are minimized.

• Ex.: $\langle A_1, A_2, A_3 \rangle$ where A_1 : 10×100; A_2 : 100×5; A_3 : 5×50

$$((\underbrace{A_1 A_2}_{10 \times 5}, \underbrace{A_3}): \underbrace{10 \times 100 \times 5}_{A_1 A_2} + \underbrace{10 \times 5 \times 50}_{(A_1 A_2)A_3} = 7500$$

$$\underbrace{(A_1(A_2A_3)):}_{10\times 100}\underbrace{100\times 5\times 50}_{10\times 100} + \underbrace{10\times 100\times 50}_{10\times 4} = 75000$$

⇒ First parenthesization yields 10 times faster computation.

Counting the Number of Parenthesizations

- Brute force approach: exhaustively check all parenthesizations
- P(n): # of parenthesizations of a sequence of n matrices
- We can split sequence between kth and (k+1)st matrices for any $k=1, 2, \ldots, n-1$, then parenthesize the two resulting sequences independently, i.e.,

$$(A_1A_2A_3 ... A_k)(A_{k+1}A_{k+2} ... A_n)$$

• We obtain the recurrence

$$P(1) = 1 \text{ and } P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)$$

Number of Parenthesizations: $\sum_{k=1}^{n-1} P(k)P(n-k)$

- The recurrence generates the sequence of Catalan Numbers
- Solution is P(n) = C(n-1) where

$$C(n) = \frac{1}{n+1} \begin{bmatrix} 2n \\ n \end{bmatrix} = \Omega(4^n/n^{3/2})$$

- The number of solutions is exponential in *n*
- Therefore, brute force approach is a poor strategy

The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

- $A_{i...j}$: matrix that results from evaluating the product $A_i A_{i+1} A_{i+2} \ldots A_j$
- An optimal parenthesization of the product $A_1 A_2 \dots A_n$
 - Splits the product between A_k and A_{k+1} , for some $1 \le k < n$ $(A_1 A_2 A_3 \dots A_k) \cdot (A_{k+1} A_{k+2} \dots A_n)$
 - i.e., first compute $A_{1..k}$ and $A_{k+1..n}$ and then multiply these two
- The cost of this optimal parenthesization
 - Cost of computing $A_{1..k}$
 - + Cost of computing $A_{k+1..n}$
 - + Cost of multiplying $A_{1..k} \cdot A_{k+1..n}$

Step 1: Characterize the Structure of an Optimal Solution

• Key observation: given optimal parenthesization

$$(A_1A_2A_3 \dots A_k) \cdot (A_{k+1}A_{k+2} \dots A_n)$$

- Parenthesization of the subchain $A_1A_2A_3 \dots A_k$
- Parenthesization of the subchain $A_{k+1}A_{k+2} \dots A_n$ should both be optimal
- Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
- i.e., optimal substructure within an optimal solution exists.

The Structure of an Optimal Parenthesization

- Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems
- Subproblem: The problem of determining the minimum cost of computing $A_{i..j}$, i.e., parenthesization of $A_i A_{i+1} A_{i+2} \ldots A_j$
- m_{ij} : min # of scalar mult-adds needed to compute subchain $A_{i..j}$
 - the value of an optimal solution is m_{1n}
 - $-m_{ii} = 0$, since subchain $A_{i...i}$ contains just one matrix; no multiplication at all
 - $-m_{ij} = ?$

Step 2: Define Value of an Optimal Soln Recursively(m_{ij} =?)

• For i < j, optimal parenthesization splits subchain $A_{i,j}$ as $A_{i..k}$ and $A_{k+1..i}$ where $i \le k < j$ optimal cost of computing $A_{i,k}$: m_{ik} + optimal cost of computing $A_{k+1, j}$: $m_{k+1, j}$ + cost of multiplying $A_{i...k} A_{k+1...i}$: $p_{i-1} \times p_k \times p_i$ $(A_{i,k} \text{ is a } p_{i-1} \times p_k \text{ matrix and } A_{k+1,i} \text{ is a } p_k \times p_i \text{ matrix})$ $\Rightarrow m_{ij} = m_{ik} + m_{k+1, i} + p_{i-1} \times p_k \times p_i$

– The equation assumes we know the value of k, but we do not

Step 2: Recursive Equation for m_{ij}

- $m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j$
 - We do not know k, but there are j-i possible values for k; k=i, i+1, i+2, ..., j-1
 - Since optimal parenthesization must be one of these
 k values we need to check them all to find the best

```
m_{ij} = \begin{cases} 0 \text{ if } i=j \\ \\ \underset{i \leq k \leq j}{\text{MIN}} \{m_{ik} + m_{k+1,j} + p_{i-1}p_k p_j\} \text{ if } i < j \end{cases}
```

Step 2:
$$m_{ij} = MIN\{m_{ik} + m_{k+1,j} + p_{i-1}p_k p_j\}$$

- The m_{ij} values give the costs of optimal solutions to subproblems
- In order to keep track of how to construct an optimal solution
 - Define S_{ij} to be the value of k which yields the optimal split of the subchain $A_{i...i}$

That is, $S_{ij} = k$ such that

$$m_{ij} = m_{ik} + m_{k+1, j} + p_{i-1}p_k p_j$$
 holds

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

- We have relatively few subproblems
 - one problem for each choice of i and j satisfying $1 \le i \le j \le n$
 - total $n + (n-1) + ... + 2 + 1 = \frac{1}{2}n(n+1) = \Theta(n^2)$ subproblems
- We can write a recursive algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming

Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

- matrix A_i has dimensions $p_{i-1} \times p_i$ for i = 1, 2, ..., n
- the input is a sequence $\langle p_0, p_1, ..., p_n \rangle$ where length[p] = n + 1

Procedure uses the following auxiliary tables:

- -m[1...n, 1...n]: for storing the m[i, j] costs
- s[1...n, 1...n]: records which index of k achieved the optimal cost in computing m[i, j]

Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(*p*)

```
n \leftarrow \text{length}[p] - 1
for i \leftarrow 1 to n do
       m[i, i] \leftarrow 0
for \ell \leftarrow 2 to n do
       for i \leftarrow 1 to n - \ell + 1 do
              j \leftarrow i + \ell - 1
              m[i,j] \leftarrow \infty
              for k \leftarrow i to j–1 do
                      q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
                      if q < m[i, j] then
                             m[i, j] \leftarrow q
                             s[i,j] \leftarrow k
```

return *m* and *s*

Algorithm for Computing the Optimal Costs

- The algorithm first computes $m[i, i] \leftarrow 0$ for i = 1, 2, ..., n min costs for all chains of length 1
- Then, for $\ell = 2, 3, ..., n$ computes $m[i, i+\ell-1]$ for $i = 1, ..., n-\ell+1$ min costs for all chains of length ℓ
- For each value of $\ell = 2, 3, ..., n$, $m[i, i+\ell-1]$ depends only on table entries $m[i, k] \& m[k+1, i+\ell-1]$ for $i \le k < i+\ell-1$, which are already computed

Algorithm for Computing the Optimal Costs

```
\ell = 2
for i = 1 to n - 1
     m[i, i+1] = \infty
                                     compute m[i, i+1]
                                     \{m[1, 2], m[2, 3], ..., m[n-1, n]\}
     for k = i to i do
                                               (n-1) values
\ell = 3
for i = 1 to n - 2
     m[i, i+2] = \infty
                                    compute m[i, i+2]
     for k = i to i+1 do
                                    \{m[1,3], m[2,4], ..., m[n-2,n]\}
                                               (n-2) values
\ell = 4
for i = 1 to n - 3
     m[i, i+3] = \infty
                                    compute m[i, i+3]
     for k = i to i+2 do
                                    \{m[1, 4], m[2, 5], ..., m[n-3, n]\}
                                               (n-3) values
```


 p_j

Table reference pattern for m[i, j] $(1 \le i \le j \le n)$

Table reference pattern for m[i, j] $(1 \le i \le j \le n)$

R(i, j) = # of times that m[i, j] is referenced in computing other entries

$$R(i, j) = (n-j) + (i-1)$$

= $(n-1) - (j-i)$

The total # of references for the entire table is

$$\sum_{i=1}^{n} \sum_{j=i}^{n} R(i,j) \frac{n^{3} - n}{3}$$

Constructing an Optimal Solution

- MATRIX-CHAIN-ORDER determines the optimal # of scalar mults/adds
 - needed to compute a matrix-chain product
 - it does not directly show how to multiply the matrices
- That is,
 - it determines the cost of the optimal solution(s)
 - it does not show how to obtain an optimal solution
- Each entry s[i, j] records the value of k such that optimal parenthesization of $A_i \dots A_j$ splits the product between $A_k \& A_{k+1}$
- We know that the final matrix multiplication in computing $A_{1...n}$ optimally is $A_{1...s[1,n]} \times A_{s[1,n]+1,n}$

Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively

Given:

- the chain of matrices $A = \langle A_1, A_2, \dots A_n \rangle$
- the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product $A_{i...j}$

```
MATRIX-CHAIN-MULTIPLY(A, s, i, j)

if j > i then

X \leftarrow \text{MATRIX-CHAIN-MULTIPLY}(A, s, i, s[i, j])

Y \leftarrow \text{MATRIX-CHAIN-MULTIPLY}(A, s, s[i, j]+1, j)

return MATRIX-MUTIPLY(X, Y)

else

return A_i

Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)
```

Example: Recursive Construction of an Optimal Solution

MCM(1,6)

return (?)

Example: Recursive Construction of an Optimal Solution

Example: Recursive Construction of an Optimal Solution

Elements of Dynamic Programming

- When should we look for a DP solution to an optimization problem?
- Two key ingredients for the problem
 - Optimal substructure
 - Overlapping subproblems

DP Hallmark #1

Optimal Substructure

- A problem exhibits optimal substructure
 - if an optimal solution to a problem contains within it optimal solutions to subproblems
- Example: matrix-chain-multiplication
 - Optimal parenthesization of $A_1A_2...A_n$ that splits the product between A_k and A_{k+1} ,
 - contains within it optimal soln's to the problems of parenthesizing $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$

Optimal Substructure

- The optimal substructure of a problem often suggests a suitable space of subproblems to which DP can be applied
- Typically, there may be several classes of subproblems that might be considered natural
- Example: matrix-chain-multiplication
 - All subchains of the input chain
 We can choose an arbitrary sequence of matrices from the input chain
 - However, DP based on this space solves many more subproblems

Optimal Substructure

Finding a suitable space of subproblems

- Iterate on subproblem instances
- Example: matrix-chain-multiplication
 - Iterate and look at the structure of optimal soln's to subproblems, sub-subproblems, and so forth
 - Discover that all subproblems consists of subchains of $\langle A_1, A_2, \dots, A_n \rangle$
 - Thus, the set of chains of the form

$$\langle A_i, A_{i+1}, \ldots, A_j \rangle$$
 for $1 \le i \le j \le n$

Makes a natural and reasonable space of subproblems

DP Hallmark #2

Overlapping Subproblems

- Total number of distinct subproblems should be polynomial in the input size
- When a recursive algorithm revisits the same problem over and over again
 - we say that the optimization problem has overlapping subproblems

Overlapping Subproblems

- DP algorithms typically take advantage of overlapping subproblems
 - by solving each problem once
 - then storing the solutions in a table
 where it can be looked up when needed
 - using constant time per lookup

Overlapping Subproblems

Recursive matrix-chain order

```
\mathbf{RMC}(p, i, j)
   if i = j then
        return 0
    m[i,j] \leftarrow \infty
    for k \leftarrow i to j-1 do
        q \leftarrow \text{RMC}(p, i, k) + \text{RMC}(p, k+1, j) + p_{i-1}p_kp_i
        if q < m[i, j] then
              m[i,j] \leftarrow q
    return m[i, j]
```

Recursive Matrix-chain Order

Recursion tree for RMC(p,1,4)

Nodes are labeled with *i* and *j* values

Running Time of RMC

$$T(1) \ge 1$$

$$T(n) \ge 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1)$$
 for $n > 1$

- For i = 1, 2, ..., n each term T(i) appears twice
 - Once as T(k), and once as T(n-k)
- Collect *n*–1 1's in the summation together with the front 1

$$T(n) \ge 2\sum_{i=1}^{n-1} T(i) + n$$

• Prove that $T(n) = \Omega(2^n)$ using the substitution method

Running Time of RMC: Prove that $T(n) = \Omega(2^n)$

• Try to show that $T(n) \ge 2^{n-1}$ (by substitution)

Base case:
$$T(1) \ge 1 = 2^0 = 2^{1-1}$$
 for $n = 1$

IH:
$$T(i) \ge 2^{i-1}$$
 for all $i = 1, 2, ..., n-1$ and $n \ge 2$

$$T(n) \ge 2 \sum_{i=1}^{n-1} 2^{i-1} + n$$

$$=2\sum_{i=0}^{n-2} 2^{i} + n = 2(2^{n-1} - 1) + n$$

$$= 2^{n-1} + (2^{n-1} - 2 + n)$$

$$\Rightarrow$$
T $(n) \ge 2^{n-1}$

Q.E.D.

Running Time of RMC: $T(n) \ge 2^{n-1}$

Whenever

- a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly
- the total number of different subproblems is small
 it is a good idea to see if DP can be applied

Memoization

- Offers the efficiency of the usual DP approach while maintaining top-down strategy
- Idea is to memoize the natural, but inefficient, recursive algorithm

Memoized Recursive Algorithm

- Maintains an entry in a table for the soln to each subproblem
- Each table entry contains a special value to indicate that the entry has yet to be filled in
- When the subproblem is first encountered its solution is computed and then stored in the table
- Each subsequent time that the subproblem encountered the value stored in the table is simply looked up and returned

Memoized Recursive Algorithm

- The approach assumes that
 - The set of all possible subproblem parameters are known
 - The relation between the table positions and subproblems is established
- Another approach is to memoize
 - by using hashing with subproblem parameters as key

Memoized Recursive Matrix-chain Order

```
LookupC(p, i, j)
   if m[i,j] = \infty then
       if i = j then
           m[i,j] \leftarrow \mathbf{0}
        else
             for k \leftarrow i to j-1 do
                q \leftarrow \text{LookupC}(p, i, k) + \text{LookupC}(p, k+1, j) + p_{i-1}p_kp_i
                if q < m[i, j] then
                    m[i,j] \leftarrow q
```

MemoizedMatrixChain(p)

```
n \leftarrow \text{length}[p] - 1
for i \leftarrow 1 to n do
      for j \leftarrow 1 to n do
             m[i,j] \leftarrow \infty
```

return LookupC(p, 1, n)

>Shaded subtrees are looked-up rather than recomputing

return m[i, j]

Elements of Dynamic Programming: Summary

- Matrix-chain multiplication can be solved in $O(n^3)$ time
 - by either a top-down memoized recursive algorithm
 - or a bottom-up dynamic programming algorithm
- Both methods exploit the overlapping subproblems property
 - There are only $\Theta(n^2)$ different subproblems in total
 - Both methods compute the soln to each problem once
- Without memoization the natural recursive algorithm runs in exponential time since subproblems are solved repeatedly

Elements of Dynamic Programming: Summary

In general practice

- If all subproblems must be solved at once
 - a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a constant factor

because, bottom-up DP algorithm

- Has no overhead for recursion
- Less overhead for maintaining the table
- DP: Regular pattern of table accesses can be exploited to reduce the time and/or space requirements even further
- Memoized: If some problems need not be solved at all, it has the advantage of avoiding solutions to those subproblems

Longest Common Subsequence

A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out

```
Formal definition: Given a sequence X = \langle x_1, x_2, ..., x_m \rangle, sequence Z = \langle z_1, z_2, ..., z_k \rangle is a subsequence of X if \exists a strictly increasing sequence \langle i_1, i_2, ..., i_k \rangle of indices of X such that x_i = z_j for all j = 1, 2, ..., k, where 1 \le k \le m

Example: Z = \langle B, C, D, B \rangle is a subsequence of X = \langle A, B, C, B, D, A, B \rangle with the index sequence \langle i_1, i_2, i_3, i_4 \rangle = \langle 2, 3, 5, 7 \rangle
```

Longest Common Subsequence (LCS)

Given two sequences X & Y, Z is a common subsequence of X & Y

Example: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$ Sequence $\langle B, C, A \rangle$ is a common subsequence of X and Y.

However, $\langle B, C, A \rangle$ is not a longest common subsequence (LCS) of X and Y.

<B, C, B, A> is an LCS of *X* and *Y*.

Longest common subsequence (LCS):

Given two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ We wish to find the LCS of X & Y

Characterizing a Longest Common Subsequence

A brute force approach

- Enumerate all subsequences of *X*
- Check each subsequence to see if it is also a subsequence of *Y* meanwhile keeping track of the LCS found
- Each subsequence of X corresponds to a subset of the index set $\{1, 2, ..., m\}$ of X
- So, there are 2^m subsequences of X
- Hence, this approach requires exponential time

Characterizing a Longest Common Subsequence

Definition: The *i*-th prefix X_i of X for i = 0,1, ..., m is $X_i = \langle x_1, x_2, ..., x_i \rangle$

Example: Given
$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X_4 = \langle A, B, C, B \rangle$ and $X_{\emptyset} = \text{empty sequence}$

Theorem: (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ are given Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y

- 1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- 2. If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y
- 3. If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}

Optimal Substructure Theorem (case 1)

If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

Optimal Substructure Theorem (case 2)

If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y

Optimal Substructure Theorem (case 3)

If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}

Proof of Optimal Substructure Theorem (case 1)

If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

Proof: If $z_k \neq x_m = y_n$ then

we can append $x_m = y_n$ to Z to obtain a common subsequence of length $k+1 \Rightarrow$ contradiction

Thus, we must have $z_k = x_m = y_n$

Hence, the prefix Z_{k-1} is a length-(k-1) CS of X_{m-1} and Y_{n-1}

We have to show that Z_{k-1} is in fact an LCS of X_{m-1} and Y_{n-1}

Proof by contradiction:

Assume that \exists a CS W of X_{m-1} and Y_{n-1} with |W| = kThen appending $x_m = y_n$ to W produces a CS of length k+1

Proof of Optimal Substructure Theorem (case 2)

If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y

Proof: If $z_k \neq x_m$ then Z is a CS of X_{m-1} and Y_n

We have to show that Z is in fact an LCS of X_{m-1} and Y_n

(Proof by contradiction)

Assume that \exists a CS W of X_{m-1} and Y_n with |W| > k

Then W would also be a CS of X and Y

Contradiction to the assumption that

Z is an LCS of X and Y with |Z| = k

Case 3: Dual of the proof for (case 2)

Longest Common Subsequence Algorithm

```
LCS(X, Y)
     m \leftarrow \operatorname{length}[X]
     n \leftarrow \text{length}[Y]
     if x_m = y_n then
          Z \leftarrow LCS(X_{m-1}, Y_{n-1}) > solve one subproblem
          return \langle Z, x_m = y_n \rangle > append x_m = y_n to Z
     else
          Z' \leftarrow LCS(X_{m-1}, Y)

Z'' \leftarrow LCS(X, Y_{n-1}) \gt solve two subproblems
          return longer of Z' and Z''
```

A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine if $x_m = y_n$ then

we must solve the subproblem of finding an LCS of X_{m-1} & Y_{n-1} appending $x_m = y_n$ to this LCS yields an LCS of X & Y

else

we must solve two subproblems

- finding an LCS of $X_{m-1} & Y$
- finding an LCS of $X \& Y_{n-1}$

longer of these two LCSs is an LCS of X & Y

endif

A Recursive Solution to Subproblems

Overlapping-subproblems property

- finding an LCS to X_{m-1} & Y and an LCS to X & Y_{m-1} has the subsubproblem of finding an LCS to X_{m-1} & Y_{n-1}
- many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution

c[i,j]: length of an LCS of the prefix subsequences $X_i \& Y_i$

If either i = 0 or j = 0, one of the prefix sequences has length 0, so the LCS has length 0

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1],c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

$$CS473 - \text{Lecture } 10 \qquad Cevdet Aykanat - Bilkent University}$$

$$Computer Engineering Department$$

We can easily write an exponential-time recursive algorithm based on the given recurrence

However, there are only $\Theta(mn)$ distinct subproblems Therefore, we can use dynamic programming

Data structures:

Table c[0...m, 0...n] is used to store c[i, j] values

Entries of this table are computed in row-major order

Table b[1...m, 1...n] is maintained to simplify the construction of an optimal solution

b[i, j]: points to the table entry corresponding to the optimal subproblem solution chosen when computing c[i, j]

```
LCS-LENGTH(X,Y)
      m \leftarrow \text{length}[X]; n \leftarrow \text{length}[Y]
      for i \leftarrow 0 to m \operatorname{do} c[i, 0] \leftarrow 0
      for j \leftarrow 0 to n do c[0, j] \leftarrow 0
      for i \leftarrow 1 to m do
            for i \leftarrow 1 to n do
                  if x_i = y_i then
                         c[i,j] \leftarrow c[i-1,j-1]+1
                         b[i, i] \leftarrow "\\"
                   else if c[i - 1, j] \ge c[i, j - 1]
                         c[i,j] \leftarrow c[i-1,j]
                         b[i, j] \leftarrow \text{``}\uparrow\text{''}
                   else
                         c[i,j] \leftarrow c[i,j-1]
                         b[i,j] \leftarrow "\leftarrow"
```

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_j	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0						
2 B	0						
3 C	0						
4 B	0						
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_j	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑	↑	∇	← 1	Γ 1
2 B	0						
3 C	0						
4 B	0						
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑	↑ 0	↑ 0	下 1	← 1	下 1
2 B	0	下 1	← 1	← 1	↑ 1	∇ 2	← 2
3 C	0						
4 B	0						
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	1 0	↑ 0	Γ 1	← 1	下 1
2 B	0	Γ 1	← 1	←1	1	⊼ 2	←2
3 C	0	1	1	Γ 2	← 2	1 2	↑ 2
4 B	0						
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑	∇	← 1	Γ 1
2 B	0	下 1	← 1	← 1	1 1	∇ 2	← 2
3 C	0	↑ 1	1 1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	∇					
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	† 0	∇ 1	← 1	Γ 1
2 B	0	∇	← 1	← 1	1	∇ 2	← 2
3 C	0	↑ 1	1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	∇	↑ 1				
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑ 0	下 1	← 1	下 1
2 B	0	下 1	← 1	← 1	1 1	∇ 2	←2
3 C	0	↑ 1	↑ 1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	∇	<u>↑</u>	↑ 2			
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑ 0	∇	← 1	∇
2 B	0	下 1	← 1	← 1	1 1	∇ 2	← 2
3 C	0	1	1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	∇	↑ 1	↑ 2	↑ 2		
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑ 0	∇	← 1	∇
2 B	0	∇	← 1	← 1	1 1	∇ 2	← 2
3 C	0	1 1	1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	∇	↑ 1	↑ 2	↑ 2	Γ 3	
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$
 $X = \langle B, D, C, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑ 0	∇	← 1	下 1
2 B	0	下 1	← 1	←1	1 1	∇ 2	← 2
3 C	0	↑ 1	1 1		← 2	↑ 2	↑ 2
4 B	0	∇	↑ 1	↑ 2	↑ 2	⊼ 3	← 3
5 D	0						
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle A, B, C, B, D, A, B \rangle$
 $X = \langle B, D, C, A, B, A \rangle$
 $X = \langle B, D, C, A, B, A \rangle$

j	0	1 B	2 D	3 C	4 A	5 B	6 A
i $0 x_i$	y_j						
	0	0	0	0	0	0	0
1 A	0	↑ 0	← 0	← 0	下 1	← 1	下 1
2 B	0	下 1	← 1	← 1	1 1	2	← 2
3 C	0	1	1	下 2	← 2	↑ 2	1 2
4 B	0	Γ 1	1	↑ 2	↑ 2	Γ 3	← 3
5 D	0	1	∇ 2	1 2	↑ 2	↑ 3	↑ 3
6 A	0						
7 B	0						

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $X = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

j i	0 y_i	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	† 0	↑ 0	↑ 0	下 1	← 1	Γ 1
2 B	0	Γ 1	← 1	← 1	1	∇ 2	← 2
3 C	0	1	1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	Γ 1	1	1 2	↑ 2	Γ 3	← 3
5 D	0	↑ 1	∇ 2	1 2	↑ 2	↑ 3	↑ 3
6 A	0	1	1 2	↑ 2	Γ 3	↑ 3	Γ 4
7 B	0						

Operation of LCS-LENGTH on the sequences

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A, B \rangle$
 $X = \langle B, D, C, A, B, A, B, A \rangle$

Running-time = O(mn)since each table entry takes O(1) time to compute $LCS ext{ of } X & Y = <B, C, B, A>$

j i	0 y_j	1 B	2 D	3 C	4 A	5 B	6 A
$0 x_i$	0	0	0	0	0	0	0
1 A	0	↑ 0	↑ 0	↑ 0	∇ 1	← 1	下 1
2 B	0	下 1	← 1	← 1	1	∇ 2	← 2
3 C	0	<u>↑</u>	1 1	∇ 2	← 2	↑ 2	↑ 2
4 B	0	∇	↑ 1	↑ 2	↑ 2	∇	← 3
5 D	0	↑ 1	∇ 2	↑ 2	↑ 2	↑ 3	↑ 3
6 A	0	↑ 1	↑ 2	↑ 2	⊼ 3	↑ 3	∇ 4
7 B	0	下 1	↑ 2	↑ 3	↑ 3	∇ 4	↑ 4

Operation of LCS-LENGTH on the sequences

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$
 $X = \langle B, D, C, A, B, A \rangle$

Running-time = O(mn)since each table entry takes O(1) time to compute $LCS ext{ of } X & Y = <B, C, B, A>$

							1
j	0	1	2	3	4	5	6
i	y_i	В	D	C	Α	В	A
	-						
$0 x_i$	0	0	0	0	0	0	0
		1	个	个	K		r
1 A	0	↑	↑	↑	1	←1	1
		K			1	K	
2 B	0	1	←1	←1	1	2	←2
		1	个	7		个	1
3 C	0	1	1	2	←2	↑ 2	↑ 2
		7	1			7	
4 B	0	1	1	↑ 2	↑ 2	3	←3
		1	L	1	1	个	1
5 D	0	↑ 1	2	2	↑ 2	↑ 3	↑ 3
		1		个	K		7
6 A	0	1	↑ 2	↑ 2 ↑ 2 ↑ 3	3	↑ 3	4
		7	1	1	1	<u></u>	个
7 B	0	1	↑ 2	3	1 3	4	↑ 4

Constructing an LCS

The *b* table returned by LCS-LENGTH can be used to quickly construct an LCS of *X* & *Y*

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a " \nwarrow " in entry b[i, j] it implies that $x_i = y_j$ is an element of LCS

The elements of LCS are encountered in reverse order

Constructing an LCS

```
PRINT-LCS(b, X, i, j)
    if i = 0 or j = 0 then
                                  The initial invocation:
                                  PRINT-LCS(b, X, length[X], length[Y])
        return
    if b[i, j] = "\\\" then
        PRINT-LCS(b, X, i-1, j-1)
        print x_i
    else if b[i, j] = "\uparrow" then
        PRINT-LCS(b, X, i-1, j)
    else
        PRINT-LCS(b, X, i, j-1)
```

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(m+n) time since at least one of i and j is determined in each stage of the recursion

Longest Common Subsequence

Improving the code:

- we can eliminate the b table altogether
- each c[i, j] entry depends only on 3 other c table entries c[i-1, j-1], c[i-1, j] and c[i, j-1]

Given the value of c[i, j]

- we can determine in O(1) time which of these 3 values was used to compute c[i, j] without inspecting table b
- we save $\Theta(mn)$ space by this method
- however, space requirement is still $\Theta(mn)$ since we need $\Theta(mn)$ space for the c table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH

- since it needs only two rows of table c at a time
- the row being computed and the previous row

This improvement works if we only need the length of an LCS