CS473-Algorithms I

Lecture 10

Dynamic Programming
Introduction

- An algorithm design paradigm like divide-and-conquer
- “Programming”: A tabular method (not writing computer code)
- **Divide-and-Conquer (DAC):** subproblems are independent
- **Dynamic Programming (DP):** subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
 - In solving problems with overlapping subproblems
 - A DAC algorithm *does redundant* work
 - Repeatedly solves common subproblems
 - A DP algorithm solves each problem just once
 - *Saves* its result in a table
Optimization Problems

• **DP** typically applied to optimization problems
• In an optimization problem
 – There are many possible solutions (feasible solutions)
 – Each solution has a value
 – Want to find an optimal solution to the problem
 • A solution with the optimal value (min or max value)
 – Wrong to say “the” optimal solution to the problem
 • There may be several solutions with the same optimal value
Development of a DP Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from the information computed in Step 3
Example: Matrix-chain Multiplication

- **Input**: a sequence (chain) \(\langle A_1, A_2, \ldots, A_n \rangle \) of \(n \) matrices
- **Aim**: compute the product \(A_1 \cdot A_2 \cdot \ldots \cdot A_n \)
- A product of matrices is fully parenthesized if
 - It is either a single matrix
 - Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

\[
\begin{align*}
\triangleright & (A_i (A_{i+1} A_{i+2} \ldots A_j)) \\
\triangleright & ((A_i A_{i+1} A_{i+2} \ldots A_{j-1}) A_j) \\
\triangleright & ((A_i A_{i+1} A_{i+2} \ldots A_k) (A_{k+1} A_{k+2} \ldots A_j)) \quad \text{for } i \leq k < j
\end{align*}
\]

- All parenthesizations yield the same product; matrix product is associative
Matrix-chain Multiplication: An Example Parenthesization

- Input: $\langle A_1, A_2, A_3, A_4 \rangle$
- 5 distinct ways of full parenthesization
 - $(A_1(A_2(A_3A_4)))$
 - $(A_1((A_2A_3)A_4))$
 - $((A_1A_2)(A_3A_4))$
 - $((A_1(A_2A_3))A_4)$
 - $(((A_1A_2)A_3)A_4)$
- The way we parenthesize a chain of matrices can have a dramatic effect on the cost of computing the product
Cost of Multiplying two Matrices

Matrix has two attributes

- **rows[A]:** # of rows
- **cols[A]:** # of columns

of scalar mult-adds in

C ← AB is

rows[A]×cols[B]×cols[A]

A: \((p \times q)\)

B: \((q \times r)\)

C=A·B is \(p \times r\).

of mult-adds is \(p \times r \times q\)

MATRIX-MULTIPLY(A, B)

if cols[A]≠rows[B] then

error(“incompatible dimensions”)

for \(i \leftarrow 1\) to \(\text{rows}[A]\) do

for \(j \leftarrow 1\) to \(\text{cols}[B]\) do

\(C[i,j] \leftarrow 0\)

for \(k \leftarrow 1\) to \(\text{cols}[A]\) do

\(C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]\)

return C

C=A·B is \(p \times r\).
Matrix-chain Multiplication Problem

Input: a chain $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices, A_i is a $p_{i-1} \times p_i$ matrix

Aim: fully parenthesize the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ such that the number of scalar mult-adds are minimized.

• Ex.: $\langle A_1, A_2, A_3 \rangle$ where $A_1: 10 \times 100$; $A_2: 100 \times 5$; $A_3: 5 \times 50$

\[
\begin{align*}
((A_1 A_2) A_3): & \quad 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500 \\
& \quad 10 \times 5 \times 50 \\
& \quad A_1 A_2 \\
& \quad (A_1 A_2) A_3 \\
(A_1 (A_2 A_3)): & \quad 100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000 \\
& \quad 10 \times 100 \times 50 \\
& \quad A_2 A_3 \\
& \quad A_1 (A_2 A_3) \\
\end{align*}
\]

\Rightarrow First parenthesization yields 10 times faster computation.
Counting the Number of Parenthesizations

• Brute force approach: exhaustively check all parenthesizations
• \(P(n) \): # of parenthesizations of a sequence of \(n \) matrices
• We can split sequence between \(k \)th and \((k+1)\)st matrices for any \(k=1, 2, \ldots, n-1 \), then parenthesize the two resulting sequences independently, i.e.,
 \[
 (A_1A_2A_3\ldots A_k)(A_{k+1}A_{k+2}\ldots A_n)
 \]

• We obtain the recurrence
 \[
 P(1) = 1 \quad \text{and} \quad P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)
 \]
Number of Parenthesizations: \[\sum_{k=1}^{n-1} P(k) P(n-k) \]

- The recurrence generates the sequence of Catalan Numbers
- Solution is \(P(n) = C(n-1) \) where

\[
C(n) = \frac{1}{n+1} \binom{2n}{n} = \Omega\left(\frac{4^n}{n^{3/2}}\right)
\]

- The number of solutions is exponential in \(n \)
- Therefore, brute force approach is a poor strategy
The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

- $A_{i..j}$: matrix that results from evaluating the product $A_i A_{i+1} A_{i+2} \ldots A_j$

- An optimal parenthesization of the product $A_1 A_2 \ldots A_n$
 - Splits the product between A_k and A_{k+1}, for some $1 \leq k < n$

 $(A_1 A_2 A_3 \ldots A_k) \cdot (A_{k+1} A_{k+2} \ldots A_n)$
 - i.e., first compute $A_{1..k}$ and $A_{k+1..n}$ and then multiply these two

- The cost of this optimal parenthesization

 \[
 \text{Cost of computing } A_{1..k} \ + \ \text{Cost of computing } A_{k+1..n} \ + \ \text{Cost of multiplying } A_{1..k} \cdot A_{k+1..n}
 \]
Step 1: Characterize the Structure of an Optimal Solution

- **Key observation**: given optimal parenthesization

\[(A_1A_2A_3 \ldots A_k) \cdot (A_{k+1}A_{k+2} \ldots A_n)\]

- Parenthesization of the subchain \(A_1A_2A_3 \ldots A_k\)
- Parenthesization of the subchain \(A_{k+1}A_{k+2} \ldots A_n\)

should both be optimal

- Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
- i.e., **optimal substructure** within an optimal solution exists.
The Structure of an Optimal Parenthesization

Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems

- **Subproblem**: The problem of determining the minimum cost of computing $A_{i..j}$, i.e., parenthesization of $A_iA_{i+1}A_{i+2} \ldots A_j$

- **m_{ij}**: \min # of scalar mult-adds needed to compute subchain $A_{i..j}$
 - the value of an optimal solution is m_{1n}
 - $m_{ii} = 0$, since subchain $A_{i..i}$ contains just one matrix; no multiplication at all
 - $m_{ij} = ?$
Step 2: Define Value of an Optimal Soln Recursively ($m_{ij} = ?$)

- For $i < j$, optimal parenthesesization splits subchain $A_{i..j}$ as $A_{i..k}$ and $A_{k+1..j}$ where $i \leq k < j$

 optimal cost of computing $A_{i..k} : m_{ik}$
 + optimal cost of computing $A_{k+1..j} : m_{k+1,j}$
 + cost of multiplying $A_{i..k} A_{k+1..j} : p_{i-1} \times p_k \times p_j$

 ($A_{i..k}$ is a $p_{i-1} \times p_k$ matrix and $A_{k+1..j}$ is a $p_k \times p_j$ matrix)

 $\Rightarrow m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j$

 - The equation assumes we know the value of k, but we do not
Step 2: Recursive Equation for m_{ij}

- $m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j$
 - We do not know k, but there are $j-i$ possible values for k; $k = i, i+1, i+2, \ldots, j-1$
 - Since optimal parenthesization must be one of these k values we need to check them all to find the best

$$m_{ij} = \begin{cases}
0 & \text{if } i=j \\
\min_{i \leq k < j} \{ m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j \} & \text{if } i < j
\end{cases}$$
Step 2: \(m_{ij} = \text{MIN}\{m_{ik} + m_{k+1,j} + p_{i-1}p_k p_j\} \)

- The \(m_{ij} \) values give the costs of optimal solutions to subproblems
- In order to keep track of how to construct an optimal solution
 - Define \(S_{ij} \) to be the value of \(k \) which yields the optimal split of the subchain \(A_{i..j} \)
 That is, \(S_{ij} = k \) such that
 \[
 m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1}p_k p_j
 \]
 holds
Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

- We have relatively few subproblems
 - one problem for each choice of i and j satisfying $1 \leq i \leq j \leq n$
 - total $n + (n-1) + \ldots + 2 + 1 = \frac{1}{2} n(n+1) = \Theta(n^2)$ subproblems
- We can write a recursive algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming
Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

- matrix A_i has dimensions $p_{i-1} \times p_i$ for $i = 1, 2, \ldots, n$
- the input is a sequence $\langle p_0, p_1, \ldots, p_n \rangle$ where length$[p] = n + 1$

Procedure uses the following auxiliary tables:

- $m[1\ldots n, 1\ldots n]$: for storing the $m[i, j]$ costs
- $s[1\ldots n, 1\ldots n]$: records which index of k achieved the optimal cost in computing $m[i, j]$
Algorithm for Computing the Optimal Costs

MATRX-CHAIN-ORDER\((p)\)

\[n \leftarrow \text{length}[p] - 1 \]
for \(i \leftarrow 1\) to \(n\) do

\[m[i, i] \leftarrow 0 \]

for \(\ell \leftarrow 2\) to \(n\) do

for \(i \leftarrow 1\) to \(n - \ell + 1\) do

\[j \leftarrow i + \ell - 1 \]

\[m[i, j] \leftarrow \infty \]

for \(k \leftarrow i\) to \(j-1\) do

\[q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k p_j \]

if \(q < m[i, j]\) then

\[m[i, j] \leftarrow q \]

\[s[i, j] \leftarrow k \]

return \(m\) and \(s\)
Algorithm for Computing the Optimal Costs

• The algorithm first computes
 \[m[i, i] \leftarrow 0 \] for \(i = 1, 2, \ldots, n \) min costs for all chains of length 1

• Then, for \(\ell = 2, 3, \ldots, n \) computes
 \[m[i, i+\ell-1] \] for \(i = 1, \ldots, n-\ell+1 \) min costs for all chains of length \(\ell \)

• For each value of \(\ell = 2, 3, \ldots, n \),
 \[m[i, i+\ell-1] \] depends only on table entries \(m[i, k] \) & \(m[k+1, i+\ell-1] \)
 for \(i \leq k < i+\ell-1 \), which are already computed
Algorithm for Computing the Optimal Costs

\[\ell = 2 \]
for \(i = 1 \) to \(n - 1 \)
\[
m[i, i+1] = \infty
\]
for \(k = i \) to \(i \) do
.
.
\[\ell = 3 \]
for \(i = 1 \) to \(n - 2 \)
\[
m[i, i+2] = \infty
\]
for \(k = i \) to \(i+1 \) do
.
.
\[\ell = 4 \]
for \(i = 1 \) to \(n - 3 \)
\[
m[i, i+3] = \infty
\]
for \(k = i \) to \(i+2 \) do
.
.

- \(m[1, 2], m[2, 3], \ldots, m[n-1, n] \)
- \(m[1, 3], m[2, 4], \ldots, m[n-2, n] \)
- \(m[1, 4], m[2, 5], \ldots, m[n-3, n] \)
Table access pattern in computing $m[i, j]$s for $\ell=j-i+1$

i	1	2	3	4	...	i	$\ell-1$	ℓ	...	j	...	n	
k													

for $k \leftarrow i$ to $j-1$ do

$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_k$

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

$\left(\begin{array}{c}
(A_i) (A_{i+1} A_{i+2} \ldots A_j)
\end{array}\right)$

for $k \leftarrow i$ to $j - 1$ do

$q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1} p_k$

$\forall j$
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

$$((A_i A_{i+1}) (A_{i+2} \ldots A_j))$$

for $k \leftarrow i$ to $j-1$ do

$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k$

p_j

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

\[
((A_i A_{i+1} A_{i+2}) (A_{i+3} \ldots A_j))
\]

for $k \leftarrow i$ to $j - 1$ do

\[
q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k
\]

\[
p_j
\]

Table entries currently computed

Table entries already computed

Table entries referenced
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

$$((A_i A_{i+1} \ldots A_{j-1}) (A_j))$$

for $k \leftarrow i$ to $j-1$ do

$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k$

p_j

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table reference pattern for $m[i, j]$ ($1 \leq i \leq j \leq n$)

$m[i, j]$ is referenced for the computation of
- $m[i, r]$ for $j < r \leq n$ \((n - j)\) times
- $m[r, j]$ for $1 \leq r < i$ \((i - 1)\) times
Table reference pattern for $m[i, j]$ ($1 \leq i \leq j \leq n$)

$R(i, j) =$ \# of times that $m[i, j]$ is referenced in computing other entries

$R(i, j) = (n-j) + (i-1)$

$= (n-1) - (j-i)$

The total \# of references for the entire table is

$$\sum_{i=1}^{n} \sum_{j=i}^{n} R(i, j) \frac{n^3 - n}{3}$$
Constructing an Optimal Solution

- **MATRIX-CHAIN-ORDER** determines the optimal # of scalar mults/adds
 - needed to compute a matrix-chain product
 - it does not directly show how to multiply the matrices

- That is,
 - it determines the cost of the optimal solution(s)
 - it does not show how to obtain an optimal solution

- Each entry $s[i, j]$ records the value of k such that
 optimal parenthesization of $A_i \ldots A_j$ splits the product between $A_k & A_{k+1}$

- We know that the final matrix multiplication in computing $A_{1\ldots n}$ optimally is $A_{1\ldots s[1,n]} \times A_{s[1,n]+1,n}$
Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively

Given:

- the chain of matrices $A = \langle A_1, A_2, \ldots, A_n \rangle$
- the s table computed by $\text{MATRIX-CHAIN-ORDER}$

The following recursive procedure computes the matrix-chain product $A_{i\ldots j}$

\begin{verbatim}
MATRIX-CHAIN-MULTIPLY(A, s, i, j)
 if $j > i$ then
 $X \leftarrow \text{MATRIX-CHAIN-MULTIPLY}(A, s, i, s[i, j])$
 $Y \leftarrow \text{MATRIX-CHAIN-MULTIPLY}(A, s, s[i, j]+1, j)$
 return $\text{MATRIX-MULTIPLY}(X, Y)$
 else
 return A_i
\end{verbatim}

Invocation: $\text{MATRIX-CHAIN-MULTIPLY}(A, s, 1, n)$
Example: Recursive Construction of an Optimal Solution

\[
\text{MCM}(1,6) \\
X \leftarrow \text{MCM}(1,3) = (A_1 A_2 A_3) \\
Y \leftarrow \text{MCM}(4,6) = (A_4 A_5 A_6) \\
\text{return } (?)
\]

\[
\text{MCM}(1,3) \\
X \leftarrow \text{MCM}(1,1) = A_1 \\
Y \leftarrow \text{MCM}(2,3) = (A_2 A_3) \\
\text{return } (?)
\]

\[
\begin{array}{ccccccc}
1 & 1 & 1 & 3 & 3 & 3 & 3 \\
2 & 2 & 3 & 4 & 3 & & \\
3 & 3 & 3 & 3 & 3 & & \\
1 & 1 & 1 & 3 & 3 & 3 & 3 \\
2 & 2 & 3 & 4 & 3 & & \\
3 & 3 & 3 & 3 & 3 & & \\
\end{array}
\]

\[
\begin{array}{ccc}
4 & 4 & 5 \\
5 & 5 & \\
\end{array}
\]
Example: Recursive Construction of an Optimal Solution

\[
\begin{align*}
MCM(1,6) & \leftarrow MCM(1,3) = (A_1(A_2A_3)) \rightarrow MCM(1,3) \\
Y & \leftarrow MCM(4,6) = (A_4A_5A_6) \\
\text{return } (?)
\end{align*}
\]

\[
\begin{align*}
X & \leftarrow MCM(2,3) = (A_2A_3) \rightarrow MCM(2,3) \\
\text{return } (A_1(A_2A_3))
\end{align*}
\]

\[
\begin{align*}
X & \leftarrow MCM(2,2) = A_2 \rightarrow \text{return } A_2 \\
Y & \leftarrow MCM(3,3) = A_3 \rightarrow \text{return } A_3 \\
\text{return } (A_2A_3)
\end{align*}
\]
Example: Recursive Construction of an Optimal Solution

MCM(1,6)
X ← MCM(1,3) = (A₁(A₂A₃))
Y ← MCM(4,6) = ((A₄A₅)A₆)
return (A₁(A₂A₃))((A₄A₅)A₆)

MCM(1,3)
X ← MCM(1,1) = A₁
Y ← MCM(2,3) = (A₂A₃)
return (A₁(A₂A₃))

MCM(2,3)
X ← MCM(2,2) = A₂
Y ← MCM(3,3) = A₃
return (A₂A₃)

MCM(4,6)
X ← MCM(4,5) = (A₄A₅)
Y ← MCM(6,6) = A₆
return ((A₄A₅)A₆)

MCM(4,5)
X ← MCM(4,4) = A₄
Y ← MCM(5,5) = A₅
return (A₄A₅)

return A₆

return A₁

return A₂

return A₃

return A₄

return A₅

return A₆
Elements of Dynamic Programming

• When should we look for a DP solution to an optimization problem?
• Two key ingredients for the problem
 – Optimal substructure
 – Overlapping subproblems
Optimal Substructure

• A problem exhibits optimal substructure
 – if an optimal solution to a problem contains within it optimal solutions to subproblems

• Example: matrix-chain-multiplication

Optimal parenthesization of $A_1 A_2 \ldots A_n$ that splits the product between A_k and A_{k+1}, contains within it optimal soln’s to the problems of parenthesizing $A_1 A_2 \ldots A_k$ and $A_{k+1} A_{k+2} \ldots A_n$
Optimal Substructure

• The optimal substructure of a problem often suggests a suitable space of subproblems to which DP can be applied.
• Typically, there may be several classes of subproblems that might be considered natural.
• Example: matrix-chain-multiplication
 – All subchains of the input chain
 We can choose an arbitrary sequence of matrices from the input chain
 – However, DP based on this space solves many more subproblems.
Optimal Substructure

Finding a suitable space of subproblems

• Iterate on subproblem instances
• **Example**: matrix-chain-multiplication
 – Iterate and look at the structure of optimal soln’s to subproblems, sub-subproblems, and so forth
 – Discover that all subproblems consists of subchains of \(\langle A_1, A_2, \ldots, A_n \rangle \)
 – Thus, the set of chains of the form
 \[\langle A_i, A_{i+1}, \ldots, A_j \rangle \text{ for } 1 \leq i \leq j \leq n \]
 – Makes a natural and reasonable space of subproblems
DP Hallmark #2

Overlapping Subproblems

• Total number of distinct subproblems should be polynomial in the input size
• When a recursive algorithm revisits the same problem over and over again we say that the optimization problem has overlapping subproblems
Overlapping Subproblems

- **DP** algorithms typically take advantage of overlapping subproblems
 - by solving each problem once
 - then storing the solutions in a table where it can be looked up when needed
 - using constant time per lookup
Overlapping Subproblems

Recursive matrix-chain order

\(\text{RMC}(p, i, j) \)

\[
\begin{align*}
\text{if } i &= j \text{ then} \\
& \quad \text{return } 0 \\
& \quad m[i, j] \leftarrow \infty \\
\text{for } k &\leftarrow i \text{ to } j - 1 \text{ do} \\
& \quad q \leftarrow \text{RMC}(p, i, k) + \text{RMC}(p, k+1, j) + p_{i-1} p_k p_j \\
& \quad \text{if } q < m[i, j] \text{ then} \\
& \quad \quad m[i, j] \leftarrow q \\
\text{return } m[i, j]
\end{align*}
\]
Recursive Matrix-chain Order

Recursion tree for \(\text{RMC}(p, 1, 4) \)

Nodes are labeled with \(i \) and \(j \) values

Redundant calls are filled
Running Time of RMC

\[T(1) \geq 1 \]
\[T(n) \geq 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1) \text{ for } n > 1 \]

- For \(i = 1, 2, \ldots, n \) each term \(T(i) \) appears twice
 - Once as \(T(k) \), and once as \(T(n-k) \)
- Collect \(n-1 \) \(1 \)'s in the summation together with the front 1

\[T(n) \geq 2 \sum_{i=1}^{n-1} T(i) + n \]

- Prove that \(T(n) = \Omega(2^n) \) using the substitution method
Running Time of RMC: Prove that $T(n) = \Omega(2^n)$

• Try to show that $T(n) \geq 2^{n-1}$ (by substitution)

Base case: $T(1) \geq 1 = 2^0 = 2^{1-1}$ for $n = 1$

IH: $T(i) \geq 2^{i-1}$ for all $i = 1, 2, \ldots, n - 1$ and $n \geq 2$

\[
T(n) \geq 2 \sum_{i=1}^{n-1} 2^{i-1} + n
\]

\[
= 2 \sum_{i=0}^{n-2} 2^i + n = 2(2^{n-1} - 1) + n
\]

\[
= 2^{n-1} + (2^{n-1} - 2 + n)
\]

$\Rightarrow T(n) \geq 2^{n-1}$ \hspace{1cm} \text{Q.E.D.}$
Running Time of RMC: $T(n) \geq 2^{n-1}$

Whenever

- a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly
- the total number of different subproblems is small

it is a good idea to see if **DP** can be applied
Memoization

• Offers the efficiency of the usual DP approach while maintaining top-down strategy
• Idea is to memoize the natural, but inefficient, recursive algorithm
Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each subproblem
• Each table entry contains a special value to indicate that the entry has yet to be filled in
• When the subproblem is first encountered its solution is computed and then stored in the table
• Each subsequent time that the subproblem encountered the value stored in the table is simply looked up and returned
Memoized Recursive Algorithm

• The approach assumes that
 – The set of all possible subproblem parameters are known
 – The relation between the table positions and subproblems is established

• Another approach is to memoize
 – by using hashing with subproblem parameters as key
Memoized Recursive Matrix-chain Order

\[\text{MemoizedMatrixChain}(p)\]

\[n \leftarrow \text{length}[p] - 1\]

\[\text{for } i \leftarrow 1 \text{ to } n \text{ do}\]

\[\quad \text{for } j \leftarrow 1 \text{ to } n \text{ do}\]

\[\quad m[i, j] \leftarrow \infty\]

\[\quad \text{return } \text{LookupC}(p, 1, n)\]

\[\text{LookupC}(p, i, j)\]

\[\text{if } m[i, j] = \infty \text{ then}\]

\[\quad \text{if } i = j \text{ then}\]

\[\quad m[i, j] \leftarrow 0\]

\[\quad \text{else}\]

\[\quad \text{for } k \leftarrow i \text{ to } j - 1 \text{ do}\]

\[\quad q \leftarrow \text{LookupC}(p, i, k) + \text{LookupC}(p, k+1, j) + p_{i-1} p_k p_j\]

\[\quad \text{if } q < m[i, j] \text{ then}\]

\[\quad m[i, j] \leftarrow q\]

\[\text{return } m[i, j]\]

\[\triangleright \text{Shaded subtrees are looked-up rather than recomputing}\]
Elements of Dynamic Programming: Summary

- Matrix-chain multiplication can be solved in $O(n^3)$ time
 - by either a top-down memoized recursive algorithm
 - or a bottom-up dynamic programming algorithm
- Both methods exploit the overlapping subproblems property
 - There are only $\Theta(n^2)$ different subproblems in total
 - Both methods compute the soln to each problem once
- Without memoization the natural recursive algorithm runs in exponential time since subproblems are solved repeatedly
Elements of Dynamic Programming: Summary

In general practice

• If all subproblems must be solved at once
 – a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a constant factor
 because, bottom-up DP algorithm
 • Has no overhead for recursion
 • Less overhead for maintaining the table
• DP: Regular pattern of table accesses can be exploited to reduce the time and/or space requirements even further
• Memoized: If some problems need not be solved at all, it has the advantage of avoiding solutions to those subproblems
Longest Common Subsequence

A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out.

Formal definition: Given a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$, sequence $Z = \langle z_1, z_2, \ldots, z_k \rangle$ is a subsequence of X if \exists a strictly increasing sequence $\langle i_1, i_2, \ldots, i_k \rangle$ of indices of X such that $x_i = z_j$ for all $j = 1, 2, \ldots, k$, where $1 \leq k \leq m$.

Example: $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ with the index sequence $\langle i_1, i_2, i_3, i_4 \rangle = \langle 2, 3, 5, 7 \rangle$.
Longest Common Subsequence (LCS)

Given two sequences X & Y, Z is a common subsequence of X & Y.

Example: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
Sequence $\langle B, C, A \rangle$ is a common subsequence of X and Y. However, $\langle B, C, A \rangle$ is not a longest common subsequence (LCS) of X and Y.
$\langle B, C, B, A \rangle$ is an LCS of X and Y.

Longest common subsequence (LCS):
Given two sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$.
We wish to find the LCS of X & Y.
Characterizing a Longest Common Subsequence

A brute force approach

• Enumerate all subsequences of X
• Check each subsequence to see if it is also a subsequence of Y meanwhile keeping track of the LCS found
• Each subsequence of X corresponds to a subset of the index set $\{1, 2, \ldots, m\}$ of X

• So, there are 2^m subsequences of X
• Hence, this approach requires exponential time
Characterizing a Longest Common Subsequence

Definition: The i-th prefix X_i of X for $i = 0,1, \ldots, m$ is $X_i = <x_1, x_2, \ldots, x_i>$

Example: Given $X = <A, B, C, B, D, A, B>$

$X_4 = <A, B, C, B>$ and $X_\emptyset =$ empty sequence

Theorem: (Optimal substructure of an LCS)
Let $X = <x_1, x_2, \ldots, x_m>$ and $Y = <y_1, y_2, \ldots, y_n>$ are given
Let $Z = <z_1, z_2, \ldots, z_k>$ be any LCS of X and Y

1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
2. If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y
3. If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}
Optimal Substructure Theorem (case 1)

If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
Optimal Substructure Theorem (case 2)

If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y
Optimal Substructure Theorem (case 3)

If \(x_m \neq y_n \) and \(z_k \neq y_n \) then \(Z \) is an LCS of \(X \) and \(Y_{n-1} \)

\[
X = \begin{array}{c|c|c|c}
1 & 2 & & m \\hline
\end{array}
\quad Y = \begin{array}{c|c|c|c}
1 & 2 & & n \\hline
\end{array}
\]

\[
Z = \begin{array}{c|c|c|c}
1 & 2 & & k \\hline
\end{array}
\]

\(X \rightarrow LCS \rightarrow Z \rightarrow Y_{n-1} \)
Proof of Optimal Substructure Theorem (case 1)

If \(x_m = y_n \) then \(z_k = x_m = y_n \) and \(Z_{k-1} \) is an LCS of \(X_{m-1} \) and \(Y_{n-1} \)

Proof: If \(z_k \neq x_m = y_n \) then

we can append \(x_m = y_n \) to \(Z \) to obtain a common subsequence of length \(k+1 \) \(\Rightarrow \) contradiction

Thus, we must have \(z_k = x_m = y_n \)

Hence, the prefix \(Z_{k-1} \) is a length-\((k-1)\) CS of \(X_{m-1} \) and \(Y_{n-1} \)

We have to show that \(Z_{k-1} \) is in fact an LCS of \(X_{m-1} \) and \(Y_{n-1} \)

Proof by contradiction:

Assume that \(\exists \) a CS \(W \) of \(X_{m-1} \) and \(Y_{n-1} \) with \(|W| = k \)

Then appending \(x_m = y_n \) to \(W \) produces a CS of length \(k+1 \)
Proof of Optimal Substructure Theorem (case 2)

If \(x_m \neq y_n \) and \(z_k \neq x_m \) then \(Z \) is an LCS of \(X_{m-1} \) and \(Y \)

Proof: If \(z_k \neq x_m \) then \(Z \) is a CS of \(X_{m-1} \) and \(Y_n \)

We have to show that \(Z \) is in fact an LCS of \(X_{m-1} \) and \(Y_n \)

(Proof by contradiction)
Assume that \(\exists \) a CS \(W \) of \(X_{m-1} \) and \(Y_n \) with \(|W| > k \)
Then \(W \) would also be a CS of \(X \) and \(Y \)
Contradiction to the assumption that
\(Z \) is an LCS of \(X \) and \(Y \) with \(|Z| = k \)

Case 3: Dual of the proof for (case 2)
Longest Common Subsequence Algorithm

LCS\((X, Y)\)

\[
m \leftarrow \text{length}[X] \\
n \leftarrow \text{length}[Y] \\
\text{if } x_m = y_n \text{ then} \\
\quad Z \leftarrow \text{LCS}(X_{m-1}, Y_{n-1}) \quad \triangleright \text{solve one subproblem} \\
\quad \text{return } <Z, x_m = y_n> \quad \triangleright \text{append } x_m = y_n \text{ to } Z \\
\text{else} \\
\quad Z' \leftarrow \text{LCS}(X_{m-1}, Y) \\
\quad Z'' \leftarrow \text{LCS}(X, Y_{n-1}) \quad \triangleright \text{solve two subproblems} \\
\quad \text{return longer of } Z' \text{ and } Z''
\]
A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if \(x_m = y_n \) then

we must solve the subproblem of finding an LCS of \(X_{m-1} \& Y_{n-1} \)

appending \(x_m = y_n \) to this LCS yields an LCS of \(X \& Y \)

else

we must solve two subproblems

– finding an LCS of \(X_{m-1} \& Y \)

– finding an LCS of \(X \& Y_{n-1} \)

longer of these two LCSs is an LCS of \(X \& Y \)

endif
A Recursive Solution to Subproblems

Overlapping-subproblems property

- finding an LCS to $X_{m-1} \& Y$ and an LCS to $X \& Y_{n-1}$ has the subsubproblem of finding an LCS to $X_{m-1} \& Y_{n-1}$
- many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution

$c[i, j]$: length of an LCS of the prefix subsequences $X_i \& Y_j$

If either $i = 0$ or $j = 0$, one of the prefix sequences has length 0, so the LCS has length 0

$$c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\text{max\{ } c[i-1, j-1] \text{, } c[i-1, j] \text{\}} & \text{if } i, j > 0 \text{ and } x_i \neq y_j \\
c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j
\end{cases}$$
Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm based on the given recurrence. However, there are only $\Theta(mn)$ distinct subproblems. Therefore, we can use dynamic programming.

Data structures:
Table $c[0…m, 0…n]$ is used to store $c[i, j]$ values.
Entries of this table are computed in row-major order.
Table $b[1…m, 1…n]$ is maintained to simplify the construction of an optimal solution.

$b[i, j]$: points to the table entry corresponding to the optimal subproblem solution chosen when computing $c[i, j]$.
Computing the Length of an LCS

\textbf{LCS-LENGTH}(X,Y)
\begin{align*}
m & \leftarrow \text{length}[X]; \ n \leftarrow \text{length}[Y] \\
\text{for} \ i & \leftarrow 0 \ \text{to} \ m \ \text{do} \ \ c[i, 0] \leftarrow 0 \\
\text{for} \ j & \leftarrow 0 \ \text{to} \ n \ \text{do} \ \ c[0, j] \leftarrow 0 \\
\text{for} \ i & \leftarrow 1 \ \text{to} \ m \ \text{do} \\
& \quad \text{for} \ j \leftarrow 1 \ \text{to} \ n \ \text{do} \\
& \quad \quad \text{if} \ x_i = y_j \ \text{then} \\
& \quad \quad \quad \ c[i, j] \leftarrow c[i-1, j-1] + 1 \\
& \quad \quad \quad \ b[i, j] \leftarrow \textbf{“\textless”} \\
& \quad \quad \text{else if} \ c[i - 1, j] \geq c[i, j-1] \\
& \quad \quad \quad \ c[i, j] \leftarrow c[i-1, j] \\
& \quad \quad \quad \ b[i, j] \leftarrow \textbf{“↑”} \\
& \quad \quad \text{else} \\
& \quad \quad \quad \ c[i, j] \leftarrow c[i, j-1] \\
& \quad \quad \quad \ b[i, j] \leftarrow \textbf{“←”}
\end{align*}
Computing the Length of an LCS

Operation of \textbf{LCS-LENGTH} on the sequences

\[\begin{align*}
X & = <A, B, C, B, D, A, B> \\
Y & = <B, D, C, A, B, A>
\end{align*} \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[
X = \langle A, B, C, B, D, A, B \rangle \\
Y = \langle B, D, C, A, B, A \rangle
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccccc}
0 & 1 & A \\
1 & B & D & C & A & B & A \\
2 & B \\
3 & C \\
4 & B \\
5 & D \\
6 & A \\
7 & B \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & \uparrow & \uparrow & \uparrow & \leftarrow & 1 & \leftarrow & 1 & 1 \\
2 & 0 \\
3 & 0 \\
4 & 0 \\
5 & 0 \\
6 & 0 \\
7 & 0 \\
\end{array}
\]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]
\[Y = \langle B, D, C, A, B, A \rangle \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(x_i)</td>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 A</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>(\leftarrow)</td>
<td>1</td>
</tr>
<tr>
<td>2 B</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>2</td>
</tr>
<tr>
<td>3 C</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>2</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>2</td>
</tr>
<tr>
<td>4 B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(\leftarrow)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5 D</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = <A, B, C, B, D, A, B> \]

\[Y = <B, D, C, A, B, A> \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]
\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Operation:
- **X** and **Y** are the input sequences.
- The LCS-LENGTH operation computes the length of the longest common subsequence (LCS) between **X** and **Y**.
- The table above shows the dynamic programming approach to find the length of the LCS.
- Each cell represents the length of the LCS up to that point in the sequences.

Example:
- The LCS between **X** and **Y** is **< A, B, B >**.
- The length of the LCS is **3**.

Note:
- The LCS-LENGTH algorithm uses a matrix to store intermediate results and backtracks to find the actual LCS.
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_i</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

X = \(<A, B, C, B, D, A, B>\)

Y = \(<B, D, C, A, B, A>\)
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]
\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>1</td>
<td>⇐</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>⇐</td>
<td>1</td>
<td>⇐</td>
<td>1</td>
<td>↑</td>
<td>⇐</td>
<td>2</td>
<td>⇐</td>
</tr>
<tr>
<td>3</td>
<td>↑</td>
<td>1</td>
<td>↑</td>
<td>2</td>
<td>⇐</td>
<td>↑</td>
<td>2</td>
<td>↑</td>
</tr>
<tr>
<td>4</td>
<td>⇐</td>
<td>1</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>(y_j)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(\text{null})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>1</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(\leftarrow)</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(\uparrow)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>2</td>
<td>2</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>(\uparrow)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(\uparrow)</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>0</td>
<td>(\uparrow)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(\uparrow)</td>
<td>3</td>
</tr>
</tbody>
</table>

CS473 – Lecture 10
Cevdet Aykanat - Bilkent University
Computer Engineering Department
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(y_j)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>4</td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>↘</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>↘</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>↘</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>↘</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>↘</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>↘</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>↘</td>
<td>4</td>
</tr>
</tbody>
</table>

Running-time = $O(mn)$
since each table entry takes
$O(1)$ time to compute

LCS of X & $Y = <B, C, B, A>$
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

Running-time = \(O(mn) \)

since each table entry takes \(O(1) \) time to compute

LCS of \(X \) & \(Y \) = \(\langle B, C, B, A \rangle \)
Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly construct an LCS of $X \& Y$

Begin at $b[m, n]$ and trace through the table following arrows

Whenever you encounter a “↖” in entry $b[i, j]$ it implies that $x_i = y_j$ is an element of LCS

The elements of LCS are encountered in reverse order
Constructing an LCS

\textbf{PRINT-LCS}(b, X, i, j)

\begin{enumerate}
\item if \(i = 0 \) or \(j = 0 \) then
 \begin{enumerate}
 \item return
 \item if \(b[i, j] = \text{“}\rightarrow\text{“} \) then
 \begin{enumerate}
 \item PRINT-LCS\((b, X, i-1, j-1)\)
 \end{enumerate}
 \end{enumerate}
\end{enumerate}

\begin{enumerate}
\item print \(x_i \)
\item else if \(b[i, j] = \text{“}\uparrow\text{“} \) then
 \begin{enumerate}
 \item PRINT-LCS\((b, X, i-1, j)\)
 \end{enumerate}
\end{enumerate}

\begin{enumerate}
\item else
 \begin{enumerate}
 \item PRINT-LCS\((b, X, i, j-1)\)
 \end{enumerate}
\end{enumerate}

\end{enumerate}

The recursive procedure \textbf{PRINT-LCS} prints out LCS in proper order.

This procedure takes \(O(m+n) \) time since at least one of \(i \) and \(j \) is determined in each stage of the recursion.
Longest Common Subsequence

Improving the code:

- we can eliminate the b table altogether
- each $c[i, j]$ entry depends only on 3 other c table entries $c[i-1, j-1], c[i-1, j]$ and $c[i, j-1]$

Given the value of $c[i, j]$

- we can determine in $O(1)$ time which of these 3 values was used to compute $c[i, j]$ without inspecting table b
- we save $\Theta(mn)$ space by this method
- however, space requirement is still $\Theta(mn)$ since we need $\Theta(mn)$ space for the c table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH

- since it needs only two rows of table c at a time
- the row being computed and the previous row

This improvement works if we only need the length of an LCS