CS473-Algorithms I

Lecture 12b

Dynamic Tables
Why Dynamic Tables?

In some applications:

• We don't know how many objects will be stored in a table.

• We may allocate space for a table
 – But, later we may find out that it is not enough.
 – Then, the table must be reallocated with a larger size.
 • All the objects stored in the original table
 • Must be copied over into the new table.
Why Dynamic Tables?

• Similarly, if many objects are deleted from the table:
 – it may be worthwhile to reallocate the table with a smaller size.

This problem is called

 Dynamically Expanding and Contracting a table.
Why Dynamic Tables?

Using amortized analysis we will show that,

The amortized cost of insertion and deletion is $O(1)$.

Even though the actual cost of an operation is large when it triggers an expansion or a contraction.

We will also show how to guarantee that

The unused space in a dynamic table never exceeds a constant fraction of the total space.
Operations

TABLE-INSERT:

Inserts into the table an item that occupies a single slot.

TABLE-DELETE:

Removes an item from the table & frees its slot.
Load Factor

Load Factor of a Dynamic Table T

\[\alpha(T) = \frac{\text{Number of items stored in the table}}{\text{size(number of slots)} \text{ of the table}} \]

For an empty table

\[\alpha(T) = \frac{0}{0} = 1 \]

by definition
Insertion-Only Dynamic Tables

Table-Expansion:

- **Assumption:**
 - Table is allocated as an array of slots
- A table **fills up** when
 - all slots have been used
 - equivalently, when its load factor becomes 1
- **Table-Expansion occurs when**
 - An item is to be inserted into a **full table**
Insertion-Only Dynamic Tables

• A Common Heuristic
 – Allocate a new table that has twice as many slots as the old one.

• Hence, insertions are performed if only

\[
\frac{1}{2} \leq \alpha(T) \leq 1
\]
Table Insert

TABLE-INSERT (T, x)

if size[T] = 0 then
 allocate table[T] with 1 slot
 size[T] ← 1
if num[T] = size[T] then
 allocate new-table with 2.size[T] slots
 copy all items in table[T] into new-table
 free table[T]
 table[T] ← new-table[T]
 size[T] ← 2.size[T]
insert x into table[T]
num[T] ← num[T] + 1
end

table[T] : pointer to block of table storage
num[T] : number of items in the table
size[T] : total number of slots in the table

Initially, table is empty, so num[T] = size[T] = 0

Initially, table is empty, so num[T] = size[T] = 0
Table Expansion

- Running time of **TABLE-INSERT** is proportional to the number of elementary insert operations.
- Assign a cost of 1 to each elementary insertion
- Analyze a sequence of n **TABLE-INSERT** operations on an initially empty table
Cost of Table Expansion

What is cost c_i of the i-th operation?

- If there is room in the current table (or this is the first operation)
 $$c_i = 1 \text{ (only one elementary insert operation)}$$
- If the current table is full, an expansion occurs, then the cost is $c_i = i$.
 1 for the elementary insertion of the new item
 $i-1$ for the items that must be copied from the old table to the new table.
Cost of Table Expansion

• If n operations are performed,
 The worst case cost of an operation is $O(n)$
 Therefore the total running time is $O(n^2)$

• This bound is not tight, because
 Expansion does not occur so often in the course of n operations.
Amortized Analysis of Insert

The Aggregate Method

Table is \textit{initially empty}.

Observe:

\(i\)-th operation causes an \textit{expansion} only when \(i-1\) is a power of 2.

\[
c_i = \begin{cases}
 i & \text{if } i \text{ is an exact power of } 2 \\
 1 & \text{otherwise}
\end{cases}
\]
The Aggregate Method

Therefore the total cost of n `TABLE-INSERT` operations is

$$
\sum_{i=1}^{n} c_i = n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n + \sum_{j=0}^{\log n} 2^j = n + 2n = 3n
$$

| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ...
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|...
| c_i | 1 | 2 | 3 | 1 | 5 | 1 | 1 | 1 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |...
| Expansion cost | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |...

The amortized cost of a single operation is $3n/n = 3 = O(1)$
The Accounting Method

Assign the following \textit{amortized costs}

- Table-Expansion : 0
- Insertion of a new item : 3

\textbf{Insertion of a new item}

a) 1 (as an actual cost) for inserting itself into the table
b) 1 (as a credit) for moving \textit{itself} in the next expansion
c) 1 (as a credit) for moving another item (in the next expansion) that has already \textit{moved in the last expansion}
Accounting Method Example

Size of the table: M

Immediately after an expansion (just before the insertion),

num[T] = $M/2$ and size[T] = M where M is a power of 2.

Table contains no credits

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

.
Accounting Method Example

1st insertion

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1</td>
<td></td>
</tr>
</tbody>
</table>

2nd insertion

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1</td>
<td>$1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1</td>
<td>$1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Accounting Method Example

\text{M/2th Insertion}

\begin{center}
\begin{tabular}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}

Thus, by the time the table contains \(M \) items and is full

– each item in the table has 1 of credit to pay for its move during the next expansion
The Potential Method

Define a potential function Φ that is

– 0 immediately after an expansion

– builds to the table size by the time table becomes full

Next expansion can be paid for by the potential.
Definition of Φ

One possible Φ is:

$$\Phi(T) = 2 \cdot \text{num}[T] - \text{size}[T]$$

Immediately after an expansion

$$\text{size}[T] = 2 \cdot \text{num}[T] \Rightarrow \Phi(T) = 0$$

Immediately before an expansion

$$\text{size}[T] = \text{num}[T] \Rightarrow \Phi(T) = \text{num}[T]$$

The initial value for the potential is 0
Definition of Φ

Since the table is at least half full

(i.e. $\text{num}[T] \geq \text{size}[T] / 2$)

$\Phi(T)$ is always nonnegative.

Thus, the sum of the amortized cost of n

TABLE-INSERT operations is an upper

bound on the sum of the actual costs.
Analysis of i-th Table Insert

$n_i : \text{num}[T]$ after the i-th operation

$s_i : \text{size}[T]$ after the i-th operation

$\Phi_i : \text{Potential}$ after the i-th operation

Initially we have $n_i = s_i = \Phi_i = 0$

Note that, $n_i = n_{i-1} + 1$ always hold.
Insert without Expansion

If the \(i \)-th TABLE-INSERT does not trigger an expansion,

\[
\hat{c}_i = c_i + \phi_i - \phi_{i-1} = 1 + (2n_i - s_i) - (2n_{i-1} - s_{i-1}) \\
= 1 + (2(n_{i-1} + 1) - s_{i-1}) - (2n_{i-1} - s_{i-1}) \\
= 1 + 2\eta_{i-1} + 2 - \$_{i-1} - 2\eta_{i-1} + \$_{i-1} = 3
\]
Insert with Expansion

If the \(i \)-th TABLE-INSERT does trigger an expansion, then

\[
\begin{align*}
 n_{i-1} &= s_{i-1}; \\
 s_i &= 2s_{i-1}; \\
 c_i &= n_i = n_{i-1} + 1 \\
 \hat{c}_i &= c_i + \phi_i - \phi_{i-1} = n_i + (2n_i - s_i) - (2n_{i-1} - s_{i-1}) \\
 &= (n_{i-1} + 1) + (2(n_{i-1} + 1) + 2s_{i-1}) - (2n_{i-1} - s_{i-1}) \\
 &= n_{i-1} + 1 + 2n_{i-1} + 2 - 2n_{i-1} - 2n_{i-1} + n_{i-1} = 3
\end{align*}
\]
Adding Delete Operation

TABLE-DELETE: Remove the specified item from the table. It is often desirable to **contract** the table. In table **contraction**, we would like to preserve two properties

- **Load factor** of dynamic table is bounded below by a constant
- **Amortized cost** of a table operation is bounded above by a constant

We assume that the cost can be measured in terms of elementary **insertions** and **deletions**
Expansion and Contraction

A natural strategy for expansion and contraction

- Double the table size when an item is inserted into a full table
- Halve the size when a deletion would cause $\alpha(T) < 1/2$

This strategy guarantees $\frac{1}{2} \leq \alpha(T) \leq 1$

Unfortunately, it can cause the amortized cost of an operation to be quite large
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Consider the following worst case scenario

- We perform n operations on an empty table where n is a power of 2
- First $n/2$ operations are all insertions, cost a total of $\Theta(n)$
 at the end: we have $\text{num}[T] = \text{size}[T] = n/2$
- Second $n/2$ operations repeat the sequence $\text{I D D I I D D I I D D I ...}$
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Example: $n=16$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>oper:</td>
<td>I</td>
<td>I</td>
<td>...</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
</tr>
<tr>
<td>n_i</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

In the second $n/2$ operations

- The first INSERT cause an expansion
- Two further DELETEs cause contraction
- Two further INSERTs cause expansion ... and so on

Hence there are $n/8$ expansions and $n/8$ contractions

The cost of each expansion and contraction is $\approx n/2$
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Thus the total cost of n operations is $\Theta(n^2)$ since

- First $n/2$ operations: $3n$
- Second $n/2$ operations: $(n/4) \times (n/2) = n^2/8$

The amortized cost of an operation is $\Theta(n)$

The difficulty with this strategy is

- After an expansion, we do not perform enough deletions to pay for a contraction
- After a contraction, we do not perform enough insertions to pay for an expansion
Improving Expansion – Contraction

We can improve upon this strategy by allowing $\alpha(T)$ to drop below $\frac{1}{2}$

We continue to double the table size when an item is inserted into a full table

But, we halve the table size (perform contraction) when a deletion causes $\alpha(T) < \frac{1}{4}$ rather than $\alpha(T) < \frac{1}{2}$,

Therefore, $\frac{1}{4} \leq \alpha(T) \leq 1$
Improving Expansion – Contraction

Hence after an expansion, $\alpha(T) = \frac{1}{2}$, thus at least half of the items in the table must be deleted before a contraction can occur.

Similarly, after a contraction $\alpha(T) = \frac{1}{2}$, thus the number of items in the table must be doubled by insertions before an expansion can occur.
Potential Method

Define the potential function as follows

• $\Phi(T) = 0$ immediately after an expansion or contraction

• Recall that, $\alpha(T) = \frac{1}{2}$ immediately after and expansion or contraction, therefore the potential should build up to num[T] as $\alpha(T)$ increases to 1 or decreases to $\frac{1}{4}$

• So that the next expansion or contraction can be paid by the potential.
$\Phi(\alpha) \text{ w.r.t. } \alpha(T)$

$M = \text{num}[T]$ when an expansion or contraction occurs
Description of New Φ

One such Φ is

$$
\Phi(T) = \begin{cases}
2\text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}
$$

or

$$
\Phi(T) = \begin{cases}
\text{num}[T](2 - 1/\alpha) & \text{if } \alpha(T) \geq \frac{1}{2} \\
\text{num}[T](1/2\alpha - 1) & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}
$$
Description of New Φ

- $\Phi = 0$ when $\alpha = \frac{1}{2}$
- $\Phi = \text{num}[T]$ when $\alpha = \frac{1}{4}$
- $\Phi = 0$ for an empty table

 \[\text{num}[T] = \text{size}[T]=0, \alpha[T] = 0 \]
- Φ is always nonnegative
Amortized Analysis

Operations are:

– TABLE-INSERT
– TABLE-DELETE

c_i : Actual Cost \quad \hat{c}_i : Amortized Cost \quad \Phi_i : \Phi(T)
n_i : num[T] \quad s_i : size[T] \quad \alpha_i : \alpha(T)

after the i-th operation
Table Insert

\[n_i = n_{i-1} + 1 \Rightarrow n_{i-1} = n_i - 1 \]

Table contraction may not occur.

- \(\alpha_{i-1} \geq \frac{1}{2} \)
 Analysis is identical to that for table expansion
 Therefore, \(\hat{c}_i = 3 \) whether the table expands or not.

- \(\alpha_{i-1} < \frac{1}{2} \) and \(\alpha_i < \frac{1}{2} \)
 Expansion may not occur (\(\hat{c}_i = 1 \), \(s_i = s_{i-1} \))
 \[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (\frac{3i}{2} - n_i) - (\frac{s_{i-1}}{2} - n_{i-1}) \]
 \[= 1 + \frac{s_i}{2} - n_i - \frac{s_i}{2} + (n_i - 1) = 0 \]
Table Insert

• $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i \geq \frac{1}{2}$

$\Rightarrow \alpha_i = \frac{1}{2}$

Expansion may not occur ($c_i = 1$; $s_i = s_{i-1}$; $n_i = s_i / 2$)

\[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + \left(\frac{s_i}{2} - n_i\right) - \left(2n_{i-1} - s_{i-1}\right) \]
\[= 1 + \frac{s_i}{2} - n_i - 2(n_i - 1) + s_i = 3 - 3s_i / 2 - 3n_i \]
\[= 3 + 3s_i / 2 - 3n_i = 3 + 3s_i / 2 - 3s_i / 2 = 3 \]

Thus, amortized cost of a TABLE-INSERT operation is at most 3.
Table Delete

\[n_i = n_{i-1} - 1 \implies n_{i-1} = n_i + 1 \]

Table expansion may not occur.

- \(\alpha_{i-1} \leq \frac{1}{2} \) and \(\frac{1}{4} \leq \alpha_i < \frac{1}{2} \) (It does not trigger a contraction)

\[s_i = s_{i-1} \text{ and } c_i = 1 \text{ and } \alpha_i < \frac{1}{2} \]

\[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + \left(\frac{s_i}{2} - n_i \right) - \left(\frac{s_{i-1}}{2} - n_{i-1} \right) = 1 + \frac{s_i}{2} - n_i - \frac{s_i}{2} + (n_i + 1) = 2 \]
Table Delete

- $\alpha_{i-1} = \frac{1}{4}$ (It does trigger a contraction)

 $s_i = s_{i-1}/2; \quad n_i = s_{i-1}/2; \quad$ and $c_i = n_i + 1$

 $\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = (n_i + 1) + (s_i / 2 - n_i) - (s_{i-1} / 2 - n_{i-1})$

 $= n_i + 1 + s_i / 2 - n_i - s_i + s_i / 2 = 1$

- $\alpha_{i-1} > \frac{1}{2} (\alpha_i \geq \frac{1}{2})$

 Contraction may not occur ($c_i = 1; \quad s_i = s_{i-1}$)

 $\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (2n_i - s_i) - (2n_{i-1} - s_{i-1})$

 $= 1 + 2n_i - s_i - 2(n_i + 1) + s_i = -1$
Table Delete

- \(\alpha_{i-1} = \frac{1}{2} \) (\(\alpha_i < \frac{1}{2} \))

Contraction may not occur

\[
c_i = 1 ; s_i = s_{i-1} ; n_i = s_{i-1}/2; \text{ and } \Phi_{i-1}=0)
\]

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (s_i/2 - n_i) - 0 \\
= 1 + s_i / 2 - n_i \quad \text{but} \quad n_{i+1} = s_i / 2 \\
= 1 + (n_i + 1) - n_i = 2
\]
Table Delete

Thus, the amortized cost of a **TABLE-DELETE** operation is at most 2

Since the amortized cost of each operation is **bounded** above by a constant

The actual time for any sequence of \(n \) operations on a Dynamic Table is \(O(n) \)