
1

CS473 - Algorithms I

CS 473 – DP Examples

Other Dynamic Programming

Problems

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

View in slide-show mode

2

CS473 - Algorithms I

CS 473 – DP Examples

Problem 1

Subset Sum

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

3CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Subset-Sum Problem

Given:

 a set of integers X = {x1, x2, …, xn}, and

 an integer B

Find:

 a subset of X that has maximum sum not exceeding B.

Notation: Sn,B = {x1, x2, …, xn: B} is the subset-sum problem

 The integers to choose from: x1, x2, …, xn

 Desired sum: B

4CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Subset-Sum Problem

Example:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S12,99: {20, 30, 14, 70, 40, 50, 15, 25, 80, 60, 10, 95: 99}

Find a subset of X with maximum sum not exceeding 99.

An optimal solution:
x1 x3 x5 x8

Nopt = {20, 14, 40, 25}

with sum 20 + 14 + 40 + 25 = 99

5CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Consider the solution as a sequence of n decisions:

ith decision: whether we pick number xi or not

Let Nopt be an optimal solution for Sn,B

Let xk be the highest-indexed number in Nopt

xk

Nopt (optimal for Sn,B)

Nʹopt = Nopt – {xk}

6CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

Lemma: Nʹopt = Nopt – {xk} is an optimal solution for

the subproblem Sk-1,B-xk = {x1, x2, …, xk-1: B-xk}

and

c(Nopt) = xk + c(Nʹopt)

where c(N) is the sum of all numbers in subset N

xk

Nopt (optimal for Sn,B)

Nʹopt = Nopt – {xk} (optimal for Sk-1, B-xk)

7CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property - Proof

Proof: By contradiction, assume that there exists another solution

Aʹ for Sk-1, B – xk for which:

c(Aʹ) > c(Nʹopt) and c(Aʹ) ≤ B – xk

i.e. Aʹ is a better solution than Nʹopt for Sk-1, B-xk

Then, we can construct A = Aʹ ∪{xk} as a solution to Sk, B.

We have:

c(A) = c(Aʹ) + xk

> c(Nʹopt) + xk = c(Nopt)

Contradiction! Nopt was assumed to be optimal for Sk,B.

Proof complete.

8CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property - Example

Example:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S12,99: {20, 30, 14, 70, 40, 50, 15, 25, 80, 60, 10, 95: 99}

x1 x3 x5 x8

Nopt = {20, 14, 40, 25} is optimal for S12, 99

Nʹopt = Nopt – {x8} = {20, 14, 40} is optimal for
x1 x2 x3 x4 x5 x6 x7

the subproblem S7,74 = {20, 30, 14, 70, 40, 50, 15: 74}

and

c(Nopt) = 25 + c(Nʹopt) = 25 + 74 = 99

9CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Recursive Definition an Optimal Solution

c[i, b]: the value of an optimal solution for Si,b = {x1, …, xi: b}

c[i,b] =

0 if i = 0 or b = 0

c[i-1,b] if xi > b

Max xi + c[i-1,b- xi],c[i-1,b]{ } if i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

According to this recurrence, an optimal solution Ni,b for Si,b:

 either contains xi ⟹ c(Ni,b) = xi + c(Ni-1, b-xi)

 or does not contain xi ⟹ c(Ni,b) = c(Ni-1, b)

10CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

bb-xi

c[i, b]

i-1

Need to process:

c[i, b]

after computing:

c[i-1, b],

c[i-1, b-xi]

c[i,b] =

0 if i = 0 or b = 0

c[i-1,b] if xi > b

Max xi + c[i-1,b- xi],c[i-1,b]{ } if i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

11CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

m

i

bb-xi

c[i, b]

i-1

for i⟵ 1 to m

for b⟵ 1 to n

….

….

c[i, b] =

c[i,b] =

0 if i = 0 or b = 0

c[i-1,b] if xi > b

Max xi + c[i-1,b- xi],c[i-1,b]{ } if i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

12CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Computing the Optimal Subset-Sum Value

SUBSET-SUM (x, n, B)

for b ← 0 to B do

c[0, b] ← 0

for i ← 1 to n do

c[i, 0] ← 0

for i ← 1 to n do

for b ← 1 to B do

if xi ≤ b then

c[i, b] ← Max{xi + c[i-1, b-xi], c[i-1, b]}

else

c[i, b] ← c[i-1, b]

return c[n, B]

13CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Finding an Optimal Subset

SOLUTION-SUBSET-SUM (x, b, B, c)

i ← n

b ← B

N ← ∅
while i > 0 do

if c[i, b] = c[i-1, b] then

i ← i – 1

else

N ← N ∪ {xi}

i ← i – 1

b ← b – xi

return N

14

CS473 - Algorithms I

CS 473 – DP Examples

Problem 2

Optimal Binary Search Tree

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

15CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Binary Search Tree (BST)

All keys in the

left subtree

less than 8

All keys in the

right subtree

greater than 8

This property

holds for all nodes.
Image from Wikimedia

16CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST

Keyword: English word

Satellite data: French word

end

do then

begin else if while

We can search for an

English word (node key)

efficiently, and return the

corresponding French

word (satellite data).

17CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

begin do else end if then while

5% 40% 8% 4% 10% 10% 23%

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

18CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

Example: If we search for

keyword “while”, we need

to access 3 nodes. So, 23%

of the queries will have

cost of 3.

Total cost = (depth(i)+1) × freq(i)

i
å

= 1x0.04 + 2x0.4 + 2x0.1 + 3x0.05 + 3x0.08 + 3x0.1 + 3x0.23

= 2.42

19CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

end
4%

if

10%

while

23%

else

8%

begin

5%

do

40%

then
10%

A different binary search tree (BST) leads

to a different total cost:

Total cost = 1x0.4 + 2x0.05 + 2x0.23 +

3x0.1 + 4x0.08 + 4x0.1 +

5x0.04

= 2.18

This is in fact an optimal BST.

20CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Binary Search Tree Problem

Given:

A collection of n keys K1 < K2 < … Kn to be stored in a BST.

The corresponding pi values for 1 ≤ i ≤ n

pi: probability of searching for key Ki

Find:

An optimal BST with minimum total cost:

Total cost = (depth(i)+1) × freq(i)

i
å

Note: The BST will be static. Only search operations will be

performed. No insert, no delete, etc.

21CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

Lemma 1: Let Tij be a BST containing keys Ki < Ki+1 < … < Kj.

Let TL and TR be the left and right subtrees of T. Then we have:

cost(Tij) = cost(TL)+ cost(TR)+ ph
h=i

j

å

TL TR

Intuition: When we add the root node, the

depth of each node in TL and TR increases

by 1. So, the cost of node h increases by

ph. In addition, the cost of root node r is pr.

That’s why, we have the last term at the

end of the formula above.

22CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST Tij for keys Ki < Ki+1 < … < Kj

Let Km be the key at the root of Tij

Ti,m-1 Tm+1,j

Km

Then:

Ti,m-1 is an optimal BST for subproblem

containing keys: Ki < … < Km-1

Tm+1,j is an optimal BST for subproblem

containing keys: Km+1 < … < Kj

cost(Tij) = cost(Ti,m-1)+ cost(Tm+1, j)+ ph
h=i

j

å

23CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Recursive Formulation

Note: We don’t know which root vertex leads to the minimum total cost. So, we
need to try each vertex m, and choose the one with minimum total cost.

c[i, j]: cost of an optimal BST Tij for the subproblem Ki < … < Kj

where Pij = ph
h=i

j

å

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

24CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Bottom-up computation

Before computing c[i, j], we have to make sure that the

values for c[i, r-1] and c[r+1,j] have been computed for all r.

How to choose the order in which we process c[i, j] values?

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

25CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

i j

r

j

c[i, j]

r

c[i,r-1]

c[r+1,j]

c[i,j] must be processed

after c[i,r-1] and c[r+1,j]

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

26CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

i j

j

c[i,j]

If the entries c[i,j] are

computed in the shown

order, then c[i,r-1] and

c[r+1,j] values are

guaranteed to be

computed before c[i,j].

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

27CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Computing the Optimal BST Cost

COMPUTE-OPTIMAL-BST-COST (p, n)

for i ← 1 to n+1 do

c[i, i-1] ← 0

PS[1] ← p[1] // PS[i]: prefix_sum(i): Sum of all p[j] values for j ≤ i

for i ← 2 to n do
PS[i] ← p[i] + PS[i-1] // compute the prefix sum

for d ← 0 to n−1 do

for i ← 1 to n – d do

j ← i + d

c[i, j] ← ∞

for r ← i to j do

c[i, j] ← min{c[i, j], c[i,r-1] + c[r+1, j] + PS[j] – PS[i-1]}

return c[1, n]

28CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Note on Prefix Sum

 We need Pij values for each i, j (1 ≤ i ≤ n and 1 ≤ j ≤ n),

where:

 If we compute the summation directly for every (i, j) pair, the

total runtime would be Θ(n3).

 Instead, we spend O(n) time in preprocessing to compute the

prefix sum array PS. Then we can compute each Pij in O(1)

time using PS.

Pij = ph
h=i

j

å

29CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Note on Prefix Sum

In preprocessing, compute for each i:

PS[i]: the sum of p[j] values for 1 ≤ j ≤ i

Then, we can compute Pij in O(1) time as follows:

Pij = PS[i] – PS[j-1]

Example:

1 2 3 4 5 6 7 8

p: 0.05 0.02 0.06 0.07 0.20 0.05 0.08 0.02

PS: 0.05 0.07 0.13 0.20 0.40 0.45 0.53 0.55

P27 = PS[7] – PS[1] = 0.53 – 0.05 = 0.48

P36 = PS[6] – PS[2] = 0.45 – 0.07 = 0.38

