Arrays in Java

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Arrays

= An array is an ordered list of values

The entire array Each value has a numeric index
has a single name

01 2 3 45 6 7 8 9
79|87| 94| 82| 67| 98| 87| 81| 74| 91|

scores

An array of size N is indexed from zero to N-1

This array holds 10 values that are indexed from 0 to 9

Fall 2004 Cs111

Arrays

= A particular value in an array is referenced
using the array name followed by the index in
brackets

= For example, the expression

scores[2]

refers to the value 94 (the 3rd value in the
array)

= That expression represents a place to store a
single integer and can be used wherever an
integer variable can be used

Fall 2004 Cs111 3

Arrays

= For example, an array element can be
assigned a value, printed, or used in a
calculation:
scores[2] = 89;

scores[first] = scores[first] + 2;
mean = (scores[0] + scores[1])/2;

System out. println("Top=" + scores[5]);

Fall 2004 Cs111

Arrays

= The values held in an array are called array elements

= An array stores multiple values of the same type (the
element type)

= The element type can be a primitive type or an
object reference

= Therefore, we can create an array of integers, or an
array of characters, or an array of Stri ng objects,
etc.

= In Java, the array itself is an object

= Therefore the name of the array is an object
reference variable, and the array itself must be
instantiated

Fall 2004 Cs111 5

Declaring Arrays

= The scor es array could be declared as

follows:
int[] scores = new int[10];

= The type of the variable scores isint[]
(an array of integers)

= Note that the type of the array does not
specify its size, but each object of that type
has a specific size

= The reference variable scores is setto a
new array object that can hold 10 integers

Fall 2004 Cs111

Example

D R R R T R R R s s

11
/1 BasicArray.java Aut hor: Lewi s/ Lof t us
/1 Denonstrates basic array declaration and use,
et [3 152 T
pub\ ic class BasicArray {

/lCreates an array, fills it with various integer values,

/1 nodifies one value, then prints themout.
public static void main (String[] args) {

final int LIMT = 15;
final int MULTIPLE = 10;

int[] list = newint[LIMT];

/1 Initialize the array val u

for (int index = 0; index < LIMT i ndex++)
list[index] = |ndex * MULTI PLE;

list[5] = 999; // change one array val ue

for (int index = 0; index < LIMT; |ndex++)
System out . prlm (1ist[index] oo s

}

}
Fall 2004 Cs111 7

Declaring Arrays

= Some examples of array declarations:
float[] prices = new float[500];

bool ean[] fl ags;
flags = new bool ean[20] ;

char[] codes = new char[1750];

Fall 2004 Cs111 8

Bounds Checking

= Once an array is created, it has a fixed
size

= An index used in an array reference
must specify a valid element

= That is, the index value must be in
bounds (0 to N-1)

= The Java interpreter gives an error if an

Bounds Checking

= For example, if the array codes can hold 100
values, it can be indexed using only the
numbers 0 to 99

= If count has the value 100, then the
following reference will cause an error:

System out . printl n(codes[count]);

= It's common to introduce off-by-one errors

array index is out of bounds when using arrays problen
= This is called automatic bounds for (int index=0; i ndex*; i ndex++)
checking codes[index] = index*50 + epsilon;
Bounds Checking Example

= Each array object has a public constant
called | engt h that stores the size of
the array
= It is referenced using the array name:
scores. length

= Note that | engt h holds the number of
elements, not the largest index

Fall 2004 Cs111 11

!
inport csl.Keyboard;

public class ReverseQrder {
/1 Reads a list of nunbers fromthe user, storing themin an
/1 array, then prints themin the opposite order
public static void main (String[] args) {
doubl e[] nunbers = new doubl €[10] ;
Systemout.printin (“Size of array: " + nunmbers.|ength);
for (int index = 0; index < nunbers, Ien lh \ndex++) {

stem out . pr\n(("Enter nunber ndex+1) + ")
nunber s[i ndex] = Keyboard teadDoubl e ()

Systemout.println ("The numbers in reverse order:");

for (int index = nunbers.length-1; |ndex >= 0; index--)
) Systemout.print (numbers[index] + " ");
}
Fall 2004 Cs 111 12

Example

R KRR KRR KRR KKK K KKk K KRk R R KKk R K KKKk

!

[/ LetterCount.java Aut hor: Lewi s/ Lof tus

! Dermnslra(es, lhe elati onship between arrays and strings.
7 Ek ok akx

r
EAEE R R K AEA KK KKK KREAKKRREAAK KR REE KRR X

nport csl. Keyboard;
public class LetterCount {
// Reads a sentence fromthe user and counts the number of

/1 uppercase and |lowercase letters contained init.
public static void main (String[] args) {

final int NUMCHARS = 26;

int upper = v i nt [NUMCHARS] ;

int | ower = t [NUMCHARS] ;

char current; /1 the current character being processed

int other =0; // counter for non-al phabetics

Systemout.println ("Enter a sentence:");
String line = Keyboard. readString();

Fall 2004 Cs111 13

Example

/1 Count the nunber of each letter occurence
for (int ch = 0; ch < line.length(); ch+t+) {
current = line. charAI(ch)
if (current >= &8 current <= ") |
upper[current -' A'] ++;

el se {
if Fcurrenl >='a &&currem <='27")
ower[current-'a']+
el se
ot her ++;

}

/1 Print the results

for (int letter=0; letter < upper.length; letter++) {
Systemout.print ((char) (letter + "A"))
Systemout.print (": " + upper[letter]);
Systemout.print ("\t\t" + (char} letter + "a'))
Systemout.println (" + lower[letter]);

}
Systemout. println("Non-al phabetic characters:" + other);

}

Fall 2004 Cs111 14

Initializer Lists

= An initializer list can be used to instantiate
and initialize an array in one step

= The values are delimited by braces and
separated by commas

= Examples:
int[] units = {147, 323, 89, 933, 540,

269, 97, 114, 298, 476};
char[] letterGrades = {"A, 'B, 'C,
‘D, F);

Fall 2004 Cs111 15

Initializer Lists

= Note that when an initializer list is used:
= the new operator is not used
= No size value is specified

= The size of the array is determined by
the number of items in the initializer list

= An initializer list can only be used in the
array declaration

Fall 2004 Cs111 16

Arrays as Parameters

= An entire array can be passed as a parameter
to a method

= Like any other object, the reference to the
array is passed, making the formal and actual
parameters aliases of each other

= Changing an array element within the method
changes the original

= An array element can be passed to a method
as well, and follows the parameter passing
rules of that element's type

Fall 2004 Cs111 17

Sorting

= Sorting is the process of arranging a list of items
in a particular order

= The sorting process is based on specific value(s)
= sorting a list of test scores in ascending numeric order
= sorting a list of people alphabetically by last name

= There are many algorithms for sorting a list of
items and these algorithms vary in efficiency

= We will examine two specific algorithms:
= Selection Sort
= Insertion Sort

Fall 2004 Cs111 18

Selection Sort

= The approach of Selection Sort:

Selection Sort

= An example:

= select a value and put it in its final place in the list original: 3 9 6 1 2
= repeat for all other values smal lest is 1 1 9 6 3 2
= In more detail: ; .
find th i e in the smal lest is 2: 1 2 6 3 9
= find the smallest value in the list .
o . i . smal lest is 3: 1 2 3 6 9
= switch it with the value in the first position X
= find the next smallest value in the list smel I est is 6: 1 2 3 6 9
= switch it with the value in the second position
= repeat until all values are in their proper places
Fall 2004 Cs111 19 Fall 2004 Cs111 20
Example Example
fr SortGades.java Author: Lew siLoftus 1] Donbrst fates the Sl oot on Sort Lﬁ'né“?nsen.m sort al gorit hm,
”HHWFI for lesung 2 nyﬂe“f*Se*l*ef}l?ﬂ”s?f}”””“*“““ I/”af we\yl as a generic Db]ECl”SOH 9
public class SortGrades { I/)Cb,,c class Sorts {

/lCreates an array of grades, sorts them then prints them
public static void main (String[] args) {

int[] grades = {89, 94, 69, 80, 97, 85, 73, 91, 77, 85, 93};

Sorts. sel ectionSort (grades);

for (\m index = 0; index < grades. Iengl h; |ndex++)
System out . pr| nt (grades[1 ndex] ")

Fall 2004 Cs111 21

/ISorts the specified array of integers using the selection
I1sort algorithm
public static void sel ectionSort (int[] numbers) {

int min, tenp;
for (int index = 0; index < nunbers.length-1; index++) {
mn = index
for *l"l scan = index+l; scan < nunbers length; scan++) {
(nun‘bers[scan] < hunbers[mn])

}

/1 Swap the val ues.
tenp = nunbers[minl;
numbers[nin] = nun‘bers[l ndex] ;

) nunber s[index] = tenp;
}
}

Fall 2004 Cs111 22

Swapping

= Swapping is the process of exchanging
two values

= Swapping requires three assignment
statements
tenp = first;
first = second;
second = tenp;

Fall 2004 Cs111 23

Insertion Sort

= The approach of Insertion Sort:
= pick any item and insert it into its proper place in
a sorted sublist

= repeat until all items have been inserted
= In more detail:

= consider the first item to be a sorted sublist (of
one item)
insert the second item into the sorted sublist,
shifting the first item as needed to make room to
insert the new addition
insert the third item into the sorted sublist (of two
items), shifting items as necessary
repeat until all values are inserted into their
proper positions
Fall 2004 Cs111 24

Insertion Sort

= An example:

original: 3 9 6 1 2
insert 9: 3 9 6 1 2
insert 6 3 6 9 1 2
insert 1: 1 3 6 9 2
insert 2 1 2 3 6 9
Fall 2004 Cs111 25

Example

[ARk kAR R AR KA KRRk R KA R R AR KRR R R AR KRR
/1l Sorts.java Author: Lew s/ Loftus

/1 Denmonstrates the selection sort and insertion sort algorithns,
/1 as well as a generic object sort:

Rk kxR Bty e B
public class Sorts {

If Sorts the specified array of integers using the insertion
/1 sort algorith
public static void insertionSort (int[] numbers) {

for (int index = 1; index < nunbers.length; index++) {

int key = nurrbers[\ ndex]
int position =

/1 shift larger values to the rigl

while (position > 0 && ni rrbers[posltlon 1] > key) {
nurme,s[posmun] = nunbers[posi tion-1];
posi ti on--

nunber s[posi tion] = key;
}
}
}

Fall 2004 Cs111 26

Comparing Sorts

= Both Selection and Insertion sorts are similar
in efficiency

= They both have outer loops that scan all
elements, and inner loops that compare the
value of the outer loop with almost all values
in the list

= Approximately n2 number of comparisons are
made to sort a list of size n

= We therefore say that these sorts are of order
n2

= Other sorts are more efficient: order n log, n

Fall 2004 Cs111 27

