
1

Introduction to Java

Selim Aksoy
Bilkent University

Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Fall 2004 CS 111 2

Java
n A programming language specifies the words

and symbols that we can use to write a
program

n A programming language employs a set of
rules that dictate how the words and symbols
can be put together to form valid program
statements

n The Java programming language was created
by Sun Microsystems, Inc.

n It was introduced in 1995 and it's popularity
has grown quickly since

n It is an object-oriented language

Fall 2004 CS 111 3

Java Program Structure
n In the Java programming language:

n A program is made up of one or more
classes

n A class contains one or more methods
n A method contains program statements

n These terms will be explored in detail
throughout the course

n A Java application always contains a
method called main

Fall 2004 CS 111 4

Java Program Structure

public class MyProgram
{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

Fall 2004 CS 111 5

Java Program Structure

public class MyProgram
{

}

public static void main (String[] args)

{

}

// comments about the class

// comments about the method

method header
method body

Fall 2004 CS 111 6

NetBeans IDE

2

Fall 2004 CS 111 7

Comments

n Comments in a program are called
inline documentation

n Java comments can take three forms:
// this comment runs to the end of the line

/* this symbol runs to the terminating
symbol, even across line breaks */

/** this is a javadoc comment */

Fall 2004 CS 111 8

Identifiers
n Identifiers are the words a programmer uses

in a program
n An identifier can be made up of letters, digits,

the underscore character (_), and the dollar
sign ($)

n Identifiers cannot begin with a digit
n Java is case sensitive - Total, total,

and TOTAL are different identifiers
n By convention, Java programmers use

different case styles for different types of
identifiers, such as
n title case for class names - Lincoln
n upper case for constants - MAXIMUM

Fall 2004 CS 111 9

Identifiers
n Sometimes we choose identifiers ourselves

when writing a program (such as Lincoln)
n Sometimes we are using another

programmer's code, so we use the identifiers
that they chose (such as println)

n Often we use special identifiers called
reserved words that already have a
predefined meaning in the language

n A reserved word cannot be used in any other
way

Fall 2004 CS 111 10

Reserved Words

n The Java reserved words:
abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
extends
false
final
finally
float
for
goto
if
implements
import
instanceof
int

interface
long
native
new
null
package
private
protected
public
return
short
static
strictfp

super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

Fall 2004 CS 111 11

Java Translation
n The Java compiler translates Java source

code into a special representation called
bytecode

n Java bytecode is not the machine language
for any traditional CPU

n Another software tool, called an interpreter,
translates bytecode into machine language
and executes it

n Therefore the Java compiler is not tied to any
particular machine

n Java is considered to be architecture-neutral
Fall 2004 CS 111 12

Java Translation

Java source
code

Machine
code

Java
bytecode

Java
interpreter

Bytecode
compiler

Java
compiler

3

Fall 2004 CS 111 13

Using Objects
n The System.out object represents a

destination to which we can send output
n In the Lincoln program, we invoked the
printlnmethod of the System.out object:

n The System.out object also provides the
print method that is similar to the println
method, except that it does not advance to
the next line

System.out.println ("Whatever you are, be a good one.");

object method information provided to the method
(parameters)

Fall 2004 CS 111 14

Character Strings
n Every character string is an object in Java,

defined by the String class
n Every string literal, delimited by double

quotation marks, represents a String object
n The string concatenation operator (+) is used

to append one string to the end of another
n It can also be used to append a number to a

string
n A string literal cannot be broken across two

lines in a program

Fall 2004 CS 111 15

Example
//**
// Facts.java Author: Lewis/Loftus
//
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//**

public class Facts
{

//---
// Prints various facts.
//---
public static void main (String[] args)
{

// Strings can be concatenated into one long string
System.out.println ("We present the following facts for your "

+ "extracurricular edification:");

System.out.println ();

// A string can contain numeric digits
System.out.println ("Letters in the Hawaiian alphabet: 12");

// A numeric value can be concatenated to a string
System.out.println ("Dialing code for Antarctica: " + 672);

System.out.println ("Year in which Leonardo da Vinci invented "
+ "the parachute: " + 1515);

System.out.println ("Speed of ketchup: " + 40 + " km per year");
}

}

Fall 2004 CS 111 16

String Concatenation
n The plus operator (+) is also used for

arithmetic addition
n The function that the + operator performs

depends on the type of the information on
which it operates

n If both operands are strings, or if one is a
string and one is a number, it performs string
concatenation

n If both operands are numeric, it adds them
n The + operator is evaluated left to right
n Parentheses can be used to force the

operation order

Fall 2004 CS 111 17

Example
//**
// Addition.java Author: Lewis/Loftus
//
// Demonstrates the difference between the addition and string
// concatenation operators.
//**

public class Addition
{

//---
// Concatenates and adds two numbers and prints the results.
//---
public static void main (String[] args)
{

System.out.println ("24 and 45 concatenated: " + 24 + 45);

System.out.println ("24 and 45 added: " + (24 + 45));
}

}

Fall 2004 CS 111 18

Variables
n A variable is a name for a location in

memory
n A variable must be declared by

specifying the variable's name and the
type of information that it will hold

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

4

Fall 2004 CS 111 19

Variables

n A variable can be given an initial value
in the declaration

n When a variable is referenced in a
program, its current value is used

int sum = 0;
int base = 32, max = 149;

Fall 2004 CS 111 20

Assignment
n An assignment statement changes the value

of a variable
n The assignment operator is the = sign

n The expression on the right is evaluated and
the result is stored in the variable on the left

n The value that was in total is overwritten
n You can assign only a value to a variable that

is consistent with the variable's declared type

total = 55;

Fall 2004 CS 111 21

Example
//**
// Geometry.java Author: Lewis/Loftus
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//**

public class Geometry
{

//---
// Prints the number of sides of several geometric shapes.
//---
public static void main (String[] args)
{

int sides = 7; // declaration with initialization
System.out.println ("A heptagon has " + sides + " sides.");

sides = 10; // assignment statement
System.out.println ("A decagon has " + sides + " sides.");

sides = 12;
System.out.println ("A dodecagon has " + sides + " sides.");

}
}

Fall 2004 CS 111 22

Constants
n A constant is an identifier that is similar to a variable

except that it holds one value while the program is
active

n The compiler will issue an error if you try to change
the value of a constant during execution

n In Java, we use the final modifier to declare a
constant

final int MIN_HEIGHT = 69;
n Constants:

n give names to otherwise unclear literal values
n facilitate updates of values used throughout a program
n prevent inadvertent attempts to change a value

Fall 2004 CS 111 23

Primitive Data Types
n There are exactly eight primitive data types in

Java
n Four of them represent integers:

n byte, short, int, long
n Two of them represent floating point

numbers:
n float, double

n One of them represents characters:
n char

n And one of them represents boolean values:
n boolean

Fall 2004 CS 111 24

Numeric Primitive Data

n The difference between the various
numeric primitive types is their size,
and therefore the values they can store:
Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 101 8

+/- 3.4 x 103 8 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 101 8

5

Fall 2004 CS 111 25

Characters
n A char variable stores a single character from the

Unicode character set
n A character set is an ordered list of characters, and

each character corresponds to a unique number
n The Unicode character set uses sixteen bits per

character, allowing for 65,536 unique characters
n It is an international character set, containing

symbols and characters from many world languages
n Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'

Fall 2004 CS 111 26

Boolean

n A boolean value represents a true or
false condition

n A boolean also can be used to represent
any two states, such as a light bulb
being on or off

n The reserved words true and false
are the only valid values for a boolean
type

boolean done = false;

Fall 2004 CS 111 27

Arithmetic Expressions

n An expression is a combination of one
or more operands and their operators

n Arithmetic expressions use the
operators:

n If either or both operands associated
with an arithmetic operator are floating
point, the result is a floating point

Addition +
Subtraction -
Multiplication *
Division /
Remainder % (no ^ operator)

Fall 2004 CS 111 28

Division and Remainder

n If both operands to the division operator
(/) are integers, the result is an integer
(the fractional part is discarded)

n The remainder operator (%) returns the
remainder after dividing the second
operand into the first

14 / 3 equals?

8 / 12 equals?

4

0

14 % 3 equals?

8 % 12 equals?

2
8

Fall 2004 CS 111 29

Operator Precedence

n Multiplication, division, and remainder
are evaluated prior to addition,
subtraction, and string concatenation

n Examples:

a + b + c + d + e
1 432

a + b * c - d / e
3 241

a / (b + c) - d % e
2 341

a / (b * (c + (d - e)))
4 123

Fall 2004 CS 111 30

Data Conversions
n Sometimes it is convenient to convert data

from one type to another
n For example, we may want to treat an integer

as a floating point value during a computation
n Conversions must be handled carefully to

avoid losing information
n Widening conversions are safest because they

tend to go from a small data type to a larger
one (such as a short to an int)

n Narrowing conversions can lose information
because they tend to go from a large data
type to a smaller one (such as an int to a
short)

6

Fall 2004 CS 111 31

Data Conversions
n In Java, data conversions can occur in three

ways:
n assignment conversion
n arithmetic promotion
n casting

n Assignment conversion occurs when a value
of one type is assigned to a variable of
another
n Only widening conversions can happen via

assignment
n Arithmetic promotion happens automatically

when operators in expressions convert their
operands

Fall 2004 CS 111 32

Data Conversions
n Casting is the most powerful, and dangerous,

technique for conversion
n Both widening and narrowing conversions can be

accomplished by explicitly casting a value
n To cast, the type is put in parentheses in front of

the value being converted
n For example, if total and count are

integers, but we want a floating point result
when dividing them, we can cast total:

result = (float) total / count;

Fall 2004 CS 111 33

Creating Objects
n A variable holds either a primitive type

or a reference to an object
n A class name can be used as a type to

declare an object reference variable
String title;

n No object is created with this
declaration

n The object itself must be created
separately

Fall 2004 CS 111 34

Creating Objects

n Generally, we use the new operator to
create an object

n An object is an instance of a particular
class

title = new String ("Java Software Solutions");

This calls a special method
that sets up the object

Fall 2004 CS 111 35

Creating Objects
n Because strings are so common, we

don't have to use the new operator to
create a String object

title = "Java Software Solutions";

n This is special syntax that works only
for strings

n Once an object has been instantiated,
we can use the dot operator to invoke
its methods

title.length()

Fall 2004 CS 111 36

String Methods

n The String class has several methods
that are useful for manipulating strings

n Many of the methods return a value,
such as an integer or a new String
object

n See the list of String methods in the
Java API

7

Fall 2004 CS 111 37

Example
// Construct different strings
String phrase = new String ("Change is inevitable");
String mutation1, mutation2, mutation3, mutation4;

System.out.println ("Original string: \"" + phrase + "\"");
System.out.println ("Length of string: " + phrase.length());

mutation1 = phrase.concat (", except from vending machines.");
mutation2 = mutation1.toUpperCase();
mutation3 = mutation2.replace ('E', 'X');
mutation4 = mutation3.substring (3, 30);

// Print each mutated string
System.out.println ("Mutation #1: " + mutation1);
System.out.println ("Mutation #2: " + mutation2);
System.out.println ("Mutation #3: " + mutation3);
System.out.println ("Mutation #4: " + mutation4);

System.out.println ("Mutated length: " + mutation4.length());

Fall 2004 CS 111 38

Class Libraries
n A class library is a collection of classes that

we can use when developing programs
n The Java standard class library is part of any

Java development environment
n Its classes are not part of the Java language

per se, but we rely on them heavily
n The System class and the String class are

part of the Java standard class library
n Other class libraries can be obtained through

third party vendors, or you can create them
yourself

Fall 2004 CS 111 39

Packages

n The classes of the Java standard class
library are organized into packages

n Some of the packages in the standard
class library are:

Package
java.lang
java.applet
java.awt
javax.swing
java.net
java.util
javax.xml.parsers

Purpose
General support
Creating applets for the web
Graphics and graphical user interfaces
Additional graphics capabilities and components
Network communication
Utilities
XML document processing

Fall 2004 CS 111 40

The import Declaration
n When you want to use a class from a package,

you could use its fully qualified name
java.util.Random

n Or you can import the class, and then use just
the class name

import java.util.Random;
n To import all classes in a particular package,

you can use the * wildcard character
import java.util.*;

n The Random class is part of the java.util
package and provides methods that generate
pseudorandom numbers

Fall 2004 CS 111 41

Example
import java.util.Random;

public class RandomNumbers
{

public static void main (String[] args)
{

Random generator = new Random();
int num1;
float num2;

num1 = generator.nextInt();
System.out.println ("A random integer: " + num1);

num1 = generator.nextInt(10);
System.out.println ("From 0 to 9: " + num1);

num1 = generator.nextInt(10) + 1;
System.out.println ("From 1 to 10: " + num1);

num1 = generator.nextInt(15) + 20;
System.out.println ("From 20 to 34: " + num1);

num1 = generator.nextInt(20) - 10;
System.out.println ("From -10 to 9: " + num1);

num2 = generator.nextFloat();
System.out.println ("A random float [between 0-1]: " + num2);

num2 = generator.nextFloat() * 6; // 0.0 to 5.999999
num1 = (int) num2 + 1;
System.out.println ("From 1 to 6: " + num1);

}
}

Fall 2004 CS 111 42

Class Methods
n Some methods can be invoked through the

class name, instead of through an object of
the class

n These methods are called class methods or
static methods

n The Math class contains many static
methods, providing various mathematical
functions, such as absolute value,
trigonometry functions, square root, etc.

temp = Math.cos(90) + Math.sqrt(delta);

8

Fall 2004 CS 111 43

The Keyboard Class
n The Keyboard class is NOT part of the

Java standard class library
n It is provided by the authors of the

textbook to make reading input from
the keyboard easy

n The Keyboard class is part of a
package called cs1

n It contains several static methods for
reading particular types of data

Fall 2004 CS 111 44

Example
import cs1.Keyboard;

public class Quadratic
{

//---
// Determines the roots of a quadratic equation.
//---
public static void main (String[] args)
{

int a, b, c; // ax^2 + bx + c

System.out.print ("Enter the coefficient of x squared: ");
a = Keyboard.readInt();

System.out.print ("Enter the coefficient of x: ");
b = Keyboard.readInt();

System.out.print ("Enter the constant: ");
c = Keyboard.readInt();

// Use the quadratic formula to compute the roots.
// Assumes a positive discriminant.
double discriminant = Math.pow(b, 2) - (4 * a * c);
double root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);
double root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

System.out.println ("Root #1: " + root1);
System.out.println ("Root #2: " + root2);

}
}

