
1

Methods in Java

Selim Aksoy
Bilkent University

Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Fall 2004 CS 111 2

Data Scope

n The scope of data is the area in a
program in which that data can be used
(referenced)

n Data declared at the class level can be
used by all methods in that class

n Data declared within a method can be
used only in that method

n Data declared within a method is called
local data

Fall 2004 CS 111 3

Local and Class Scope
public class X {

public static int a; // a has class scope, can be seen from
// anywhere inside the class

….

public static void m() {
a = 5; // no problem
int b = 0; // b is declared inside the method, local scope

…..
} // here variable b is destroyed, no one will remember him

public static void m2() {
a = 3; // ok
b = 4; // who is b? compiler will issue an error

}
}

Fall 2004 CS 111 4

Method Declarations
n A method declaration specifies the code that

will be executed when the method is invoked
(or called)

n When a method is invoked, the flow of
control jumps to the method and executes its
code

n When complete, the flow returns to the place
where the method was called and continues

n The invocation may or may not return a
value, depending on how the method is
defined

Fall 2004 CS 111 5

myMethod();

myMethodcompute

Method Control Flow
n The called method can be within the same class,

in which case only the method name is needed

Fall 2004 CS 111 6

doIt helpMe

helpMe();obj.doIt();

main

Method Control Flow

n The called method can be part of
another class or object

2

Fall 2004 CS 111 7

Visibility Modifiers
n Classes support encapsulation: encouraging

separation between operations and their
implementations

n In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

n A modifier is a Java reserved word that specifies
particular characteristics of a method or data value

n We have used the modifier final to define a
constant

n Java has three visibility modifiers: public,
protected, and private

n The protected modifier involves inheritance, which
we will discuss in CS 112

Fall 2004 CS 111 8

Visibility Modifiers
n Members of a class that are declared with

public visibility can be accessed from
anywhere

n Members of a class that are declared with
private visibility can only be accessed from
inside the class

n Members declared without a visibility modifier
have default visibility and can be accessed by
any class in the same package

Fall 2004 CS 111 9

Visibility Modifiers

public private

Variables

Methods

Violate
encapsulation

Enforce
encapsulation

Provide services
to clients

Support other
methods in the

class

Fall 2004 CS 111 10

The static Modifier
n Static methods can be invoked through

the class name rather than through a
particular object

n To write a static method, we apply the
static modifier to the method
definition

n The static modifier can be applied to
variables as well

n It associates a variable or method with
the class rather than with an object

Fall 2004 CS 111 11

Method Header

n A method declaration begins with a
method header
char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

Fall 2004 CS 111 12

Method Body

n The method header is followed by the
method body
char calc (int num1, int num2, String message)
{

int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

3

Fall 2004 CS 111 13

The return Statement
n The return type of a method indicates the

type of value that the method sends back to
the calling location

n A method that does not return a value has a
void return type

n A return statement specifies the value that
will be returned

return expression;
n Its expression must conform to the return

type
Fall 2004 CS 111 14

Parameters
n Each time a method is called, the actual

parameters in the invocation are copied into
the formal parameters

char calc (int num1, int num2, String message)
{

int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (25, count, "Hello");

Fall 2004 CS 111 15

Overloading Methods
n Method overloading is the process of using

the same method name for multiple methods
n The signature of each overloaded method

must be unique
n The signature includes the number, type, and

order of the parameters
n The compiler determines which version of the

method is being invoked by analyzing the
parameters

n The return type of the method is not part of
the signature

Fall 2004 CS 111 16

Overloading Methods

float tryMe (int x)
{

return x + .375;
}

Version 1

float tryMe (int x, float y)
{

return x*y;
}

Version 2

result = tryMe (25, 4.32)

Invocation

Fall 2004 CS 111 17

Overloaded Methods
n The println method is overloaded:

println(String s)
println(int i)
println(double d)

and so on...
n The following lines invoke different

versions of the println method:
System.out.println("The total is:");
System.out.println(total);

Fall 2004 CS 111 18

Method Decomposition
n A method should be relatively small, so that it

can be understood as a single entity
n A potentially large method should be

decomposed into several smaller methods as
needed for clarity

n A service method of an object may call one or
more support methods to accomplish its goal

n Support methods could call other support
methods if appropriate

4

Fall 2004 CS 111 19

The StringTokenizer Class
n The elements that comprise a string are

referred to as tokens
n The process of extracting these

elements is called tokenizing
n Characters that separate one token

from another are called delimiters
n The StringTokenizer class, which is

defined in the java.util package, is
used to separate a string into tokens

Fall 2004 CS 111 20

The StringTokenizer Class

n The default delimiters are space, tab,
carriage return, and the new line
characters

n The nextToken method returns the
next token (substring) from the string

n The hasMoreTokens returns a
boolean indicating if there are more
tokens to process

Fall 2004 CS 111 21

n Translating an English sentence into Pig
Latin can be decomposed into the
process of translating each word

n The process of translating a word can
be decomposed into the process of
translating words that
n begin with vowels
n begin with consonant blends (sh, cr, tw, …)
n begins with single consonants

Pig Latin Translation Example

Fall 2004 CS 111 22

String st = "A method should be relatively
small, so that it can be readily
understood as a single entity";

String result = PigLatinTranslator.translate(st);
System.out.println(result);

output:

ayay ethodmay ouldshay ebay elativelyray
all,smay osay atthay ityay ancay ebay
eadilyray understoodyay asyay ayay
inglesay entityyay

Pig Latin Translation Example

Fall 2004 CS 111 23

PigLatinTranslator
import java.util.StringTokenizer;

public class PigLatinTranslator {

//---
// Translates a sentence of words into Pig Latin.
//---
public static String translate (String sentence) {

String result = "";

sentence = sentence.toLowerCase();

StringTokenizer tokenizer = new StringTokenizer (sentence);
while (tokenizer.hasMoreTokens()) {

result += translateWord(tokenizer.nextToken());
result += " ";

}

return result;
}

Fall 2004 CS 111 24

PigLatinTranslator
//---
// Translates one word into Pig Latin. If the word begins with a
// vowel, the suffix "yay" is appended to the word. Otherwise,
// the first letter or two are moved to the end of the word,
// and "ay" is appended.
//---
private static String translateWord (String word) {

String result = "";

if (beginsWithVowel(word)) {
result = word + "yay";

}
else {

if (beginsWithBlend(word)) {
result = word.substring(2) + word.substring(0,2) + "ay";

}
else {

result = word.substring(1) + word.charAt(0) + "ay";
}

}

return result;
}

5

Fall 2004 CS 111 25

PigLatinTranslator
//---
// Determines if the specified word begins with a vowel.
//---
private static boolean beginsWithVowel (String word) {

String vowels = "aeiou";

char letter = word.charAt(0);

return (vowels.indexOf(letter) != -1);
}

}

