
1

Java Program Statements

Selim Aksoy
Bilkent University

Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Fall 2004 CS 111 2

Program Development
n The creation of software involves four

basic activities:
n establishing the requirements
n creating a design
n implementing the code
n testing the implementation

n The development process is much more
involved than this, but these are the
four basic development activities

Fall 2004 CS 111 3

Program Development
n Software requirements specify the tasks a program

must accomplish (what to do, not how to do it)
n A software design specifies how a program will

accomplish its requirements
n In object-oriented development, the design establishes the

classes, objects, methods, and data that are required
n Implementation is the process of translating a design

into source code
n Almost all important decisions are made during requirements

and design stages

n A program should be executed multiple times with
various input in an attempt to find errors
n Debugging is the process of discovering the causes of

problems and fixing them
Fall 2004 CS 111 4

Conditional Statements
n A conditional statement lets us choose

which statement will be executed next
n Therefore they are sometimes called

selection statements
n Conditional statements give us the

power to make basic decisions
n Java's conditional statements are

n the if statement
n the if-else statement
n the switch statement

Fall 2004 CS 111 5

The if Statement

n The if statement has the following
syntax:

if (condition)
statement;

if is a Java
reserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

Fall 2004 CS 111 6

Boolean Expressions
n A condition often uses one of Java's equality

operators or relational operators, which all
return boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

n Note the difference between the equality
operator (==) and the assignment operator (=)

2

Fall 2004 CS 111 7

The if-else Statement
n An else clause can be added to an if

statement to make an if-else statement
if (condition)

statement1;
else

statement2;
n If the condition is true, statement1 is

executed; if the condition is false,
statement2 is executed

n One or the other will be executed, but not
both

Fall 2004 CS 111 8

Example
import cs1.Keyboard;

public class Wages
{

//Reads the number of hours worked and calculates wages.
public static void main (String[] args)
{

final double RATE = 8.25; // regular pay rate
final int STANDARD = 40; // standard hours in a work week

double pay = 0.0;

System.out.print ("Enter the number of hours worked: ");
int hours = Keyboard.readInt();

System.out.println ();

// Pay overtime at "time and a half"
if (hours > STANDARD)

pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);
else

pay = hours * RATE;

System.out.println ("Gross earnings: " + pay);
}

}

Fall 2004 CS 111 9

Block Statements
n Several statements can be grouped

together into a block statement
n A block is delimited by braces : { … }
n A block statement can be used

wherever a statement is called for by
the Java syntax

n For example, in an if-else statement,
the if portion, or the else portion, or
both, could be block statements

Fall 2004 CS 111 10

Example
import cs1.Keyboard;
import java.util.Random;

public class Guessing
{

//Plays a simple guessing game with the user.
public static void main (String[] args)
{

final int MAX = 10;
int answer, guess;

Random generator = new Random();
answer = generator.nextInt(MAX) + 1;

System.out.print ("I'm thinking of a number between 1 and "
+ MAX + ". Guess what it is: ");

guess = Keyboard.readInt();

if (guess == answer)
System.out.println ("You got it! Good guessing!");

else
{

System.out.println ("That is not correct, sorry.");
System.out.println ("The number was " + answer);

}
}

}

Fall 2004 CS 111 11

Logical Operators
n Boolean expressions can use the following

logical operators:
! Logical NOT
&& Logical AND
|| Logical OR

n They all take boolean operands and produce
boolean results

n Logical NOT is a unary operator (it operates
on one operand)

n Logical AND and logical OR are binary
operators (each operates on two operands)

Fall 2004 CS 111 12

Logical Operators
n Conditions can use logical operators to form

complex expressions
if (total < MAX+5 && !found)

System.out.println ("Processing…");

n Logical operators have precedence
relationships among themselves and with
other operators
n all logical operators have lower precedence than

the relational or arithmetic operators
n logical NOT has higher precedence than logical

AND and logical OR

3

Fall 2004 CS 111 13

Short Circuited Operators

n The processing of logical AND and
logical OR is “short-circuited”

n If the left operand is sufficient to
determine the result, the right operand
is not evaluated

if (count != 0 && total/count > MAX)
System.out.println ("Testing…");

n This type of processing must be used
carefully

Fall 2004 CS 111 14

Comparing Strings
n Remember that a character string in Java is

an object
n We cannot use the relational operators to

compare strings
n The equals method can be called with

strings to determine if two strings contain
exactly the same characters in the same
order

n The String class also contains a method
called compareTo to determine if one string
comes before another (based on the Unicode
character set)

Fall 2004 CS 111 15

Lexicographic Ordering
n Because comparing characters and strings is based

on a character set, it is called a lexicographic
ordering

n This is not strictly alphabetical when uppercase and
lowercase characters are mixed

n For example, the string "Great" comes before the
string "fantastic" because all of the uppercase
letters come before all of the lowercase letters in
Unicode

n Also, short strings come before longer strings with
the same prefix (lexicographically)

n Therefore "book" comes before "bookcase"

Fall 2004 CS 111 16

Comparing Float Values
n We also have to be careful when comparing

two floating point values (float or double)
for equality

n You should rarely use the equality operator
(==) when comparing two floats

n In many situations, you might consider two
floating point numbers to be "close enough"
even if they aren't exactly equal

n Therefore, to determine the equality of two
floats, you may want to use the following
technique:

if (Math.abs(f1 - f2) < 0.00001)
System.out.println ("Essentially equal.");

Fall 2004 CS 111 17

More Operators

n To round out our knowledge of Java
operators, let's examine a few more

n In particular, we will examine
n the increment and decrement operators
n the assignment operators

Fall 2004 CS 111 18

Increment and Decrement
n The increment and decrement operators are

arithmetic and operate on one operand
n The increment operator (++) adds one to its

operand
n The decrement operator (--) subtracts one

from its operand
n The statement

count++;

is functionally equivalent to
count = count + 1;

4

Fall 2004 CS 111 19

Increment and Decrement
n The increment and decrement

operators can be applied in prefix form
(before the operand) or postfix form
(after the operand)

n When used alone in a statement, the
prefix and postfix forms are functionally
equivalent. That is,

count++;
is equivalent to

++count;
Fall 2004 CS 111 20

Increment and Decrement
n When used in a larger expression, the prefix

and postfix forms have different effects
n In both cases the variable is incremented

(decremented)
n But the value used in the larger expression

depends on the form used:
Expression
count++
++count
count--
--count

Operation

add 1
add 1

subtract 1
subtract 1

Value Used in Expression

old value
new value
old value
new value

Fall 2004 CS 111 21

Assignment Operators

n There are many assignment operators,
including the following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

Fall 2004 CS 111 22

Assignment Operators
n The behavior of some assignment

operators depends on the types of the
operands

n If the operands to the += operator are
strings, the assignment operator
performs string concatenation

n The behavior of an assignment operator
(+=) is always consistent with the
behavior of the "regular" operator (+)

Fall 2004 CS 111 23

Repetition Statements
n Repetition statements allow us to execute a

statement multiple times
n Often they are referred to as loops
n Like conditional statements, they are

controlled by boolean expressions
n Java has three kinds of repetition statements:

n the while loop
n the do loop
n the for loop

n The programmer should choose the right kind
of loop for the situation

Fall 2004 CS 111 24

The while Statement

n The while statement has the following
syntax:

while (condition)
statement;while is a

reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repeatedly until
the condition becomes false.

5

Fall 2004 CS 111 25

Example
//**
// Counter.java Author: Lewis/Loftus
//
// Demonstrates the use of a while loop.
//**

public class Counter
{

//Prints integer values from 1 to a specific limit.
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 1;

while (count <= LIMIT)
{

System.out.println (count);
count = count + 1;

}

System.out.println ("Done");
}

}

Fall 2004 CS 111 26

Example
import cs1.Keyboard;

public class WinPercentage
{

//Computes the percentage of games won by a team.
public static void main (String[] args)
{

final int NUM_GAMES = 12;
int won;
double ratio;

System.out.print ("Enter the number of games won (0 to "
+ NUM_GAMES + "): ");

won = Keyboard.readInt();

while (won < 0 || won > NUM_GAMES)
{

System.out.print ("Invalid input. Please reenter: ");
won = Keyboard.readInt();

}

ratio = (double)won / NUM_GAMES;

System.out.println ();
System.out.println ("Winning percentage: " + ratio);

}
}

A loop is used to validate the input,
making the program more robust

Fall 2004 CS 111 27

Infinite Loops
n The body of a while loop eventually

must make the condition false
n If not, it is an infinite loop, which will

execute until the user interrupts the
program

n This is a common logical error
n You should always double check to

ensure that your loops will terminate
normally

Fall 2004 CS 111 28

Example
//**
// Forever.java Author: Lewis/Loftus
//
// Demonstrates an INFINITE LOOP. WARNING!!
//**

public class Forever
{

//Prints ever decreasing integers in an INFINITE LOOP!
public static void main (String[] args)
{

int count = 1;

while (count <= 25)
{

System.out.println (count);
count = count - 1;

}

System.out.println ("Done"); //this statement never reached
}

}

Fall 2004 CS 111 29

The do Statement

n The do statement has the following
syntax:

do
{

statement;
}
while (condition)

do and
while are
reserved
words

The statement is executed once initially,
and then the condition is evaluated

The statement is executed repeatedly
until the condition becomes false

Fall 2004 CS 111 30

The do Statement

n A do loop is similar to a while loop,
except that the condition is evaluated
after the body of the loop is executed

n Therefore the body of a do loop will
execute at least once

6

Fall 2004 CS 111 31

Example
//**
// Counter2.java Author: Lewis/Loftus
//
// Demonstrates the use of a do loop.
//**

public class Counter2
{

//Prints integer values from 1 to a specific limit.
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 0;

do
{

count = count + 1;
System.out.println (count);

}
while (count < LIMIT);

System.out.println ("Done");
}

}

Fall 2004 CS 111 32

Example
import cs1.Keyboard;

public class ReverseNumber
{

//Reverses the digits of an integer mathematically.
public static void main (String[] args)
{

int number, lastDigit, reverse = 0;

System.out.print ("Enter a positive integer: ");
number = Keyboard.readInt();

do
{

lastDigit = number % 10;
reverse = (reverse * 10) + lastDigit;
number = number / 10;

}
while (number > 0);

System.out.println ("That number reversed is " + reverse);
}

}

Fall 2004 CS 111 33

Comparing while and do

statement

true

condition
evaluated

false

while loop

true

condition
evaluated

statement

false

do loop

Fall 2004 CS 111 34

The for Statement

n The for statement has the following
syntax:

for (initialization ; condition ; increment)
statement;

Reserved
word

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at the end of each iteration
The condition-statement-increment cycle is executed repeatedly

Fall 2004 CS 111 35

The for Statement

n A for loop is functionally equivalent to
the following while loop structure:

initialization;
while (condition)
{

statement;
increment;

}

Fall 2004 CS 111 36

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

7

Fall 2004 CS 111 37

The for Statement

n Like a while loop, the condition of a
for statement is tested prior to
executing the loop body

n Therefore, the body of a for loop will
execute zero or more times

n It is well suited for executing a loop a
specific number of times that can be
determined in advance

Fall 2004 CS 111 38

Example
//***
// Counter3.java Author: Lewis/Loftus
//
// Demonstrates the use of a for loop.
//***

public class Counter3
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;

for (int count=1; count <= LIMIT; count++)
System.out.println (count);

System.out.println ("Done");
}

}

Fall 2004 CS 111 39

Example
import cs1.Keyboard;

public class Multiples
{

// Prints multiples of a user-specified number up to a user-
// specified limit.
public static void main (String[] args)
{

final int PER_LINE = 5;
int value, limit, mult, count = 0;

System.out.print ("Enter a positive value: ");
value = Keyboard.readInt();

System.out.print ("Enter an upper limit: ");
limit = Keyboard.readInt();

System.out.println ();
System.out.println ("The multiples of " + value + " between " +

value + " and " + limit + " (inclusive) are:");

for (mult = value; mult <= limit; mult += value)
{

System.out.print (mult + "\t");

// Print a specific number of values per line of output
count++;
if (count % PER_LINE == 0)

System.out.println();
}

}
}

Fall 2004 CS 111 40

Example
//**
// Stars.java Author: Lewis/Loftus
//
// Demonstrates the use of nested for loops.
//**

public class Stars
{

//---
// Prints a triangle shape using asterisk (star) characters.
//---
public static void main (String[] args)
{

final int MAX_ROWS = 10;

for (int row = 1; row <= MAX_ROWS; row++)
{

for (int star = 1; star <= row; star++)
System.out.print ("*");

System.out.println();
}

}
}

Fall 2004 CS 111 41

The for Statement
n Each expression in the header of a for loop is

optional
n If the initialization is left out, no

initialization is performed
n If the condition is left out, it is always

considered to be true, and therefore creates an
infinite loop

n If the increment is left out, no increment
operation is performed

n Both semi-colons are always required in the
for loop header

Fall 2004 CS 111 42

Choosing a Loop Structure
n When you can’t determine how many times

you want to execute the loop body, use a
while statement or a do statement
n If it might be zero or more times, use a while

statement
n If it will be at least once, use a do statement

n If you can determine how many times you
want to execute the loop body, use a for
statement

