User-defined Functions

Selim Aksoy
Bilkent University
Department of Computer Engineering saksoy@cs.bilkent.edu.tr

Scripts

- Command window: . my_script.m:
- $x=2$;
disp('Hello!');
- my_script
$x=5$;
Hello!
- $y=x+2$
$y={ }_{7}$

Fall 2004
CS 111

Workspace

- Workspace is the collection of variables that can be used when a command is executing
- Scripts and the command window share the same workspace
- Global variables are problematic because values you depend on may be changed by other scripts

Functions

- The function statement marks the beginning of a function
- The name of the function must be the same as the name of the m-file
- The lookfor command searches functions according to the H 1 comment line
- The help command displays the comment lines from the H 1 line until the first non-comment line

Fall 2004
CS 111
7

Function Examples

four variables declared
function distance $=\operatorname{dist} 2(\overbrace{x 1, y 1,} x_{2}, y_{2})$ as input arguments
oDIST2 Calculate the distance between two points
$\%$ Function DIST2 calculates the distance between
$\%$ two points ($\mathrm{x} 1, \mathrm{y} 1$) and $(\mathrm{x} 2, \mathrm{y} 2)$ in a Cartesian
\% coordinate system.
\% Define variables:
$\begin{array}{lllll}\% & \mathrm{x} 1 & --x \text {-position of point } & 1 \\ \% & \mathrm{y} 1 & -- & \mathrm{y}-\text { position of point } 1 \\ \% & \mathrm{x} 2 & -- & \text { on-position of point }\end{array}$
$\begin{array}{ll}\mathrm{x} 2 & \text {-- } \mathrm{x} \text {-position of point } 2 \\ \mathrm{y}^{2} & --\mathrm{y} \text {-position of point } 2\end{array}$
distance -- Distance between points
\% Record of revisions:
Programmer
$==========$
S. J. Chapman
Description of change
$====================$
Original code
\% Calculate distance
distance $=\operatorname{sqrt}\left((\mathrm{x} 2-\mathrm{x} 1) \cdot \wedge^{2}+(\mathrm{y} 2-\mathrm{y} 1) \cdot \wedge 2\right)$;

Fall 2004

Function Examples

- help dist2

DIST2 Calculate the distance between two points Function DIST2 calculates the distance between two points ($x 1, y 1$) and ($x 2, y 2$) in a Cartesian coordinate system.

- lookfor distance

DIST2 Calculate the distance between two points GFWEIGHT Calculate the minimum distance of a linear... DISTFCM Distance measure in fuzzy c-mean clustering.

Fall 2004
CS 111 9

Function Examples

```
    Script file: test_dist2.m
    Purpose:
    Purpose:
    Record of revisions
```



```
%}\mathrm{ Define variables:
    core
    ay - y-position of point a
% by % - y-position of point b
8 Get input data.
disp('calculate the distance between two points:');
lol
% Evaluate function
* Write out result. 
Fall 2004 CS 111
```


Function Examples

- clear all
- $\mathrm{xl}=0 ; \mathrm{y} 1=5$;
- whos

Name	Size	Bytes Class
$\times 1$	1×1	8 double array
y1	1×1	8 double array

Grand total is 2 elements using 16 bytes

- test_dist2

Calculate the distance between two points:
Enter x value of point a: 1
Enter y value of point a : 1
Enter x value of point $b: 4$
Enter y value of point b : 5
The distance between points a and b is 5.000000

Function Examples

- whos		
Name	Size	Bytes Class
ax	1×1	8 double array
ay	1×1	8 double array
bx	1×1	8 double array
by	1×1	8 double array
result	1×1	8 double array
x1	1×1	8 double array
y1	1×1	8 double array

Grand total is 7 elements using 56 bytes

- x1
$x 1=$
- $\quad \begin{aligned} & \mathrm{y} 1 \\ & \mathrm{y} 1= \\ & 5\end{aligned}$

Function Examples

－Problem：write a function called strsearch that takes a string s and a character c ，and returns the number of occurrences of c in s and the index of the first occurrence．
－Pseudocode：
－For each character of s in reverse order
－If character is equal to C
－increment the counter
－save the index

Function Examples

function［ $\overbrace{\text { nt．}}^{\text {pos }]}$ ］$=$ strsearch（ s, c ） two variables declared as output arguments

```
* Function STRSEARCH finds the number of occurrences of a character
```

 Function STRSEARCH finds the number of occurrences of a charac
 c in a given string s . It returns both the index of the first
occurrence and the number of occurrences
It returns 0 for both the index and the number of occurrences if
does not exists in s.
$\frac{8}{8}$ By Pinar Senkul, 24/10/2003
pos $=0 ; ~$
cnt $=0 ; ~$

for 1 if $=\mathrm{n}:-1: 1$,
if $(\mathrm{s}(\mathrm{ii})=\mathrm{c})$),
end ${ }^{\text {en }}$
all 2004

Function Examples

－［ a，b ］＝strsearch（＇abccdecfac＇，＇c＇） $a=$
b $=$
－a＝strsearch（＇abccdecfac＇，＇c＇）
$a=$
－strsearch（＇abccdecfac＇，＇c＇）
ans $=$

Fall 2004
CS 111

Function Examples

function［mag，angle］＝polar＿value (x, y)
\％POLAR＿VALUE Converts（ x, y ）to（ r ，theta）
\％Function POLAR VALUE converts an input（ x, y ）
⿳亠丷厂犬 value into（r，theta），with theta in degrees
\％Check for $(0,0)$ input arguments，and print out
\％a warning message．
if $\mathrm{x}==0,{ }_{\mathrm{\&}}^{\mathrm{s}} \mathrm{y}==$
warning（msg）
end
\％Now calculate the magnitude．
mag $=\operatorname{sqrt}\left(\mathrm{x} \cdot \wedge^{\wedge}+\mathrm{y} \cdot \wedge^{\wedge} 2\right)$ ；
\％And calculate angle in degrees．
angle $=\operatorname{atan} 2(\mathrm{y}, \mathrm{x})$＊ $180 / \mathrm{pi}$ ；

Function Examples

```
function [avg, med] = mystats(u)
MYSTATS Find mean and median.
% Function MYSTATS calculates the average and median
% of a data set.
n = length(u);
% Calculate average.
avg = sum(u)/n
% Calculate median.
N = sort(u)
    if rem(n,2) == 1
med = w((n+1)/2)
med = ( w(n/2) + w(n/2+1) ) / 2;
end
```


mystats lavg，med］mystats

```
\(\%\) Function MYSTATS calculates the average and median
\％of a data set．
\(\mathrm{n}=\) length（u）；
\％Calculate average．
\(a v g=\operatorname{sum}(u) / n\)
\％Calculate median．
if rem \((n, 2)\)
med \(=\mathrm{w}((\mathrm{n}+1) / 2)\) ；
med \(=(\mathrm{w}(\mathrm{n} / 2)+\mathrm{w}(\mathrm{n} / 2+1)) / 2\)
```


Functions：Summary

－Both scripts and functions are saved as m－files
－Functions are special m－files that receive data through input arguments and return results through output arguments
－Scripts are just a collection of MATLAB statements
－Functions are defined by the function statement in the first line
－Scripts use the global workspace but functions have their own local independent workspaces

Fall 2004
CS 111
18

