Introduction to MATLAB

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

MATrix LABoratory
- http://www.mathworks.com
- Advantages of MATLAB
 - Ease of use
 - Platform independence
 - Predefined functions
 - Plotting
- Disadvantages of MATLAB
 - Can be slow
 - Expensive

MATLAB Desktop

MATLAB Basics
- A program can be input
 - command by command using the command line (lines starting with ">") on the MATLAB desktop
 - as a series of commands using a file (a special file called M-file)
- If a command is followed by a semicolon (;), result of the computation is not shown on the command window

MATLAB Basics: Getting Help
- help
 - help toolbox → e.g., help elfun
 - help command → e.g., help sin
- helpdesk, helpwin, "?” button
- lookfor
 - lookfor keyword → e.g., lookfor cotangent
- which
 - which name → e.g., which log
- demo

MATLAB Basics: Scratchpad

2 * 2
\[\cot(3)\sqrt{\log(3)} + \cos(3)\sin(\log(3)) \]
\[\cot(2.7)\sqrt{\log(2.7)} + \cos(2.7)\sin(\log(2.7)) \]
\[\log(\sin(0.5) + \cos(0.5)^2) + \sqrt{\sin(0.5) + \cos(0.5)^2} - (\sin(0.5) + \cos(0.5)^2) \]
MATLAB Basics: Variables

- **Variable** is a name given to a reserved location in memory
 - `class_code = 111;`
 - `number_of_students = 65;`
 - `name = 'Bilkent University';`
 - `radius = 5;`
 - `area = pi * radius^2;`

MATLAB Basics: Variables

- Use meaningful names for variables
- MATLAB variable names
 - must begin with a letter
 - can contain any combination of letters, numbers and underscore (_)
 - must be unique in the first 31 characters
- MATLAB is case sensitive: “name”, “Name” and “NAME” are considered different variables
- Never use a variable with the same name as a MATLAB command
- Naming convention: use lowercase letters

MATLAB Basics: Arrays

- The fundamental unit of data is **array**

```
   column
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
```

```
   scalar value
1
```

```
   vector
-1 40 -3 11
```

```
   matrix
15 -2 3 21
-4 1 0 13
```

MATLAB Basics: Variables

- Initialization using assignment statements
 - `x = 5`
 - `y = x + 1`
 - `v = [1 2 3 4]`
 - `m = [1 2 3; 4 5 6]`
 - `n = [1 2 3; 4 5]`

```
   ?? Error
```

```
   ??? Error
```

MATLAB Basics: Variables

- Initialization using shortcut statements
 - colon operator → first:increment:last
 - `x = 1:2:10`
 - `x = 1 3 5 7 9`
 - `y = 0:0.1:0.5`
 - `y = 0 0.1 0.2 0.3 0.4 0.5`

MATLAB Basics: Variables

- Initialization using built-in functions
 - `zeros()`
 - `x = zeros(2)`
 - `x = [0 0 ; 0 0]`
 - `ones(), size(), length()`
 - `y = zeros(1,4)`
 - `y = [0 0 0 0]`

MATLAB Basics: Variables

- Initialization using keyboard input
 - `input()`
 - `value = input('Enter an input value: ')`
 - Enter an input value: 1.25
 - value = 1.2500
 - `name = input('What is your name: ', 's')`
 - What is your name: Selim
 - name = Selim

MATLAB Basics: Subarrays

- Array indices start from 1
 - `x = [-2 0 9 1 4];`
 - `x(2)`
 - ans = 0
 - `x(4)`
 - ans = 1
 - `x(8)`
 - ??? Error

MATLAB Basics: Subarrays

- `y = [1 2 3; 4 5 6];`
 - `y(1,2)`
 - ans = 2
 - `y(2,3)`
 - ans = 6
 - `y(2)`
 - ans = 4
 - (column major order)
 - (I don’t recommend you to use this form)
 - `y(2,1:2)`
 - ans = 4 5

MATLAB Basics: Subarrays

- `y = [1 2 3; 4 5 6];`
 - `y(1,:) = [4 -1 9]`
 - y =
 - 4 -1 9
 - 0 5 6
 - `y(:,2) = [3; 2]`
 - y =
 - 1 -5 3
 - 4 5 6
 - `y(2,1) = 0`
 - y(2,1) = 0
 - `y(:,2:end)`
 - y(:,2:end) =
 - 3 2

MATLAB Basics: Subarrays

- `x = [-2 0 9 1 4];`
 - `x(2) = 5`
 - x =
 - -2 5 9 1 4
 - `x(4) = x(1)`
 - x =
 - -2 5 9 1 4
 - `x(8) = -1`
 - x =
 - -2 5 9 -2 4
 - 0 0 -1
MATLAB Basics: Subarrays

- \(z = [1 \, 2 \, 3; \, 4 \, 5 \, 6; \, 7 \, 8 \, 9]; \)
- \(z(3,:) = 0 \)
- \(z(2,:) = [1 \, 5]; \)

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2 & 2 & 3 \\
-2 & 5 & 6 \\
-2 & 0 & 0 \\
\end{bmatrix}
\]

MATLAB Basics: Special Values

- \(\pi \): \(\pi \) value up to 15 significant digits
- \(i, j \): \(\sqrt{-1} \)
- \(\text{Inf} \): infinity (such as division by 0)
- \(\text{NaN} \): Not-a-Number (such as division of zero by zero)
- \(\text{clock} \): current date and time as a vector
- \(\text{date} \): current date as a string (e.g. 16-Feb-2004)
- \(\text{eps} \): epsilon
- \(\text{ans} \): default variable for answers

MATLAB Basics: Displaying Data

- Changing the data format
- \(\text{value} = 12.345678901234567 \)
- \(\text{format short} \) → 12.3457
- \(\text{long} \) → 12.34567890123457
- \(\text{short e} \) → 1.2346e+001
- \(\text{long e} \) → 1.234567890123457e+001
- \(\text{rat} \) → 1000/81
- \(\text{compact} \)
- \(\text{loose} \)

MATLAB Basics: Displaying Data

- The \(\text{disp(array) } \) function
- \(\text{disp('Hello');} \)
- \(\text{Hello} \)
- \(\text{disp(5);} \)
- \(5 \)
- \(\text{disp(['Bilkent ' 'University']);} \)
- \(\text{Bilkent University} \)
- \(\text{name = 'Selim'; disp(['Hello ' name]);} \)
- \(\text{Hello Selim} \)

MATLAB Basics: Displaying Data

- The \(\text{num2str()} \) and \(\text{int2str()} \) functions
- \(\text{d = [num2str(16) 'Feb-' num2str(2004)];} \)
- \(\text{disp(d);} \)
- \(16-Feb-2004 \)
- \(x = 23.11; \)
- \(\text{disp(['answer = ' num2str(x)]);} \)
- \(\text{answer = 23.11} \)
- \(\text{disp(['answer = ' int2str(x)]);} \)
- \(\text{answer = 23} \)

MATLAB Basics: Displaying Data

- The \(\text{fprintf(format, data)} \) function
- \(\%d \) integer
- \(\%f \) floating point format
- \(\%e \) exponential format
- \(\\text{\ln} \) new line character
- \(\\text{\tt} \) tab character
MATLAB Basics: Displaying Data

- fprintf('Result is %d', 3);
 Result is 3
- fprintf('Area of a circle with radius %d is %f', 3, pi*3^2);
 Area of a circle with radius 3 is 28.274334
- x = 5;
- fprintf('x = %3d', x);
 x = 5
- x = pi;
- fprintf('x = %.2f', x);
 x = 3.14
- fprintf('x = %6.2f', x);
 x = 3.14
- fprintf('x = %d
 y = %d
', 3, 13);
 x = 3
 y = 13

MATLAB Basics: Scalar Operations

- variable_name = expression;
 - addition a + b \rightarrow a + b
 - subtraction a - b \rightarrow a - b
 - multiplication a * b \rightarrow a * b
 - division a / b \rightarrow a / b
 - exponent a^b \rightarrow a ^ b

MATLAB Basics: Scalar Operations

- x = 3 * 2 + 6 / 2
 - x = 9
- Processing order of operations is important
 - parenthesis (starting from the innermost)
 - exponentials (left to right)
 - multiplications and divisions (left to right)
 - additions and subtractions (left to right)
- x = 3 * 2 + 6 / 2
 - x = 9

MATLAB Basics: Built-in Functions

- result = function_name(input);
 - abs, sign
 - log, log10, log2
 - exp
 - sqrt
 - sin, cos, tan
 - asin, acos, atan
 - max, min
 - round, floor, ceil, fix
 - mod, rem
- help elfun

MATLAB Basics: Debugging

- Syntax errors
 - Check spelling and punctuation
- Run-time errors
 - Check input data
 - Can remove ";" or add "disp" statements
- Logical errors
 - Use shorter statements
 - Check typos
 - Check units
 - Ask your friends, TAs, instructor, parents, ...

MATLAB Basics: Useful Commands

- help command \rightarrow\ Online help
- lookfor keyword \rightarrow\ Lists related commands
- which \rightarrow\ Version and location info
- clear \rightarrow\ Clears the workspace
- clc \rightarrow\ Clears the command window
- diary filename \rightarrow\ Sends output to file
- diary on/off \rightarrow\ Turns diary on/off
- who, whos \rightarrow\ Lists content of the workspace
- more on/off \rightarrow\ Enables/disables paged output
- Ctrl+c \rightarrow\ Aborts operation
- \ldots\ \rightarrow\ Continuation
- % \rightarrow\ Comments