Chapter 1: Computer Systems

Presentation slides for

Java Software Solutions

Third Edition

by John Lewis and William Loftus

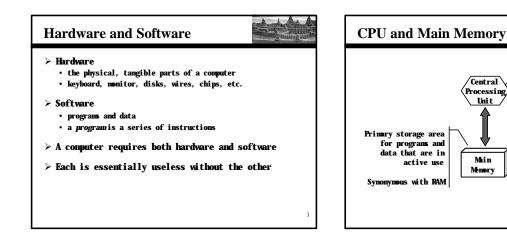
Java Software Solutions is published by Addison-Wesley

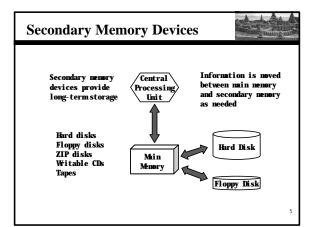
Presentation slides are copyright 2002 by John Lewis and William Loftus. All rights reserved. Instructors using the textbook may use and modify these slides for pedagogical purposes.

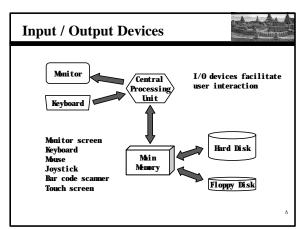
Computer Systems

- > We first need to explore the fundamentals of computer processing
- > Chapter 1 focuses on:
 - components of a computer
 - how those components interact
 - how computers store and manipulate information

Chip that executes

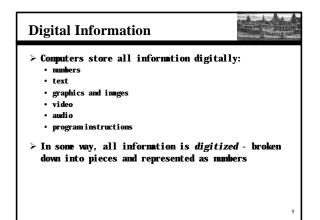

Intel Pentium 4 or

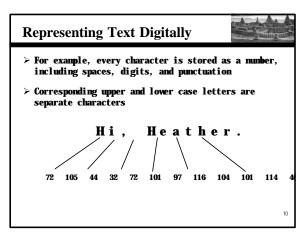

Sun ultraSPARC III


Processor

program commands

- computer networks
- the Internet and the World Wide Web
- programming and programming languages


Software Categories


- > Operating System
 - controls all machine activities
 - provides the user interface to the computer
 - manages resources such as the CPU and memory
 - Windows XP, Windows 2000, Unix, Linux, Mac OS
- > Application program
 - generic term for any other kind of software
 - word processors, missile control systems, games
- > Most operating systems and application programs have a graphical user interface (GUI)

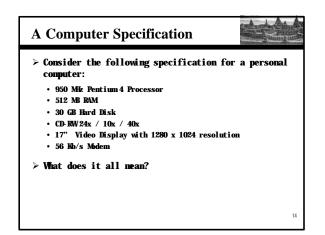
Analog vs. Digital

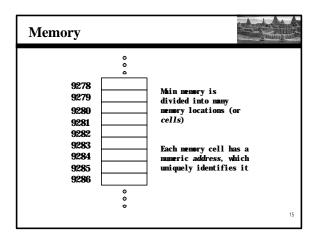
- > There are two basic ways to store and manage data:
- > Analog
 - continuous, in direct proportion to the data represented
 music on a record album- a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker
- > Digital
 - the information is broken down into pieces, and each piece is represented separately
 - music on a compact disc the disc stores numbers representing specific voltage levels sampled at specific times

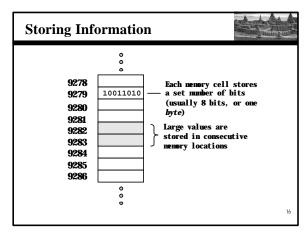
Binary Numbers	anning and
> Once information is digitized, it is repr and stored in memory using the binary mu	
> A single binary digit (0 or 1) is called	a bit
Devices that store and nove information a and nore reliable if they have to represe two states	
> A single bit can represent two possible s like a light bulb that is either on (1) o	
> Permutations of bits are used to store va	lues

A LALA

11


Bit Permutations					
<u>1 bit</u>	<u>2 bits</u>	<u>3 bits</u>	<u>4</u>	<u>bits</u>	
0	00	000	0000	1000	
1	01	001	0001	1001	
	10	010	0010	1010	
	11	011	0011	1011	
		100	0100	1100	
		101	0101	1101	
		110	0110	1110	
		111	0111	1111	
Each addit	ional bit dou	bles the num	er of pos	sible permu	tatior
					12


Bit Permutations


- > Each permutation can represent a particular item
- \succ There are 2^N permutations of N bits
- \succ Therefore, N bits are needed to represent $\boldsymbol{2}^{\mathrm{N}}$ unique itens

How many items can be represented by $\begin{cases} 1 \text{ bit } ? & 2^1 = 2 \text{ items} \\ 2 \text{ bits } ? & 2^2 = 4 \text{ items} \\ 3 \text{ bits } ? & 2^3 = 8 \text{ items} \\ 4 \text{ bits } ? & 2^4 = 16 \text{ items} \\ 5 \text{ bits } ? & 2^5 = 32 \text{ items} \end{cases}$

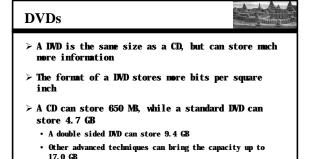
13

 > Every memory device has a storage capacity, indicating the number of bytes it can hold > Capacities are expressed in various units: <u>Unit Symbol Number of Bytes</u> kilobyte KB 2¹⁰ = 1024 megabyte MB 2²⁰ (over 1 million) gigabyte GB 2³⁰ (over 1 billion) terabyte TB 2⁴⁰ (over 1 trillion) 	Storage Capa	acity	
 Capacities are expressed in various units: <u>Unit Symbol Number of Bytes</u> kilobyte KB 2¹⁰ = 1024 megabyte MB 2²⁰ (over 1 million) gigabyte GB 2³⁰ (over 1 billion) 			
<u>Unit Symbol Number of Bytes</u> kilobyte KB 2 ¹⁰ = 1024 megabyte MB 2 ²⁰ (over 1 million) gigabyte GB 2 ³⁰ (over 1 billion)	Ū		·
kilobyte KB 2 ¹⁰ = 1024 megabyte MB 2 ²⁰ (over 1 million) gigabyte GB 2 ³⁰ (over 1 billion)	-	•	
megabyte MB 2 ²⁰ (over 1 million) gigabyte GB 2 ³⁰ (over 1 billion)	<u>Uni t</u>	Symbol	<u>Number of Bytes</u>
gigabyte GB 2 ³⁰ (over 1 billion)	kilobyte	KB	$2^{10} = 1024$
616m 1	negabyte	MB	2 ²⁰ (over 1 million)
terabyte TB 2 ⁴⁰ (over 1 trillion)	gigabyte	GB	2 ³⁰ (over 1 billion)
	terabyte	TB	2 ⁴⁰ (over 1 trillion)
	5		

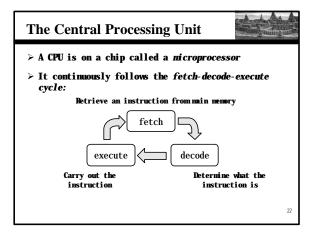
Memory	- MILLING
> Main memory is volatile - lost if the electric power :	
≻ Secondary menory devices ar	e nonvolatile
> Main memory and disks are d information can be reached	
> The terms direct access and used interchangeably	random access often are
A magnetic tape is a sequen its data is arranged in a light get by the intervening data other information	inear order - you must

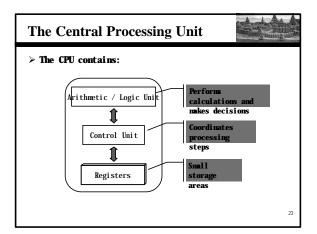
RAM vs. ROM

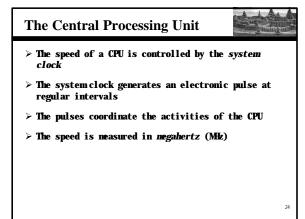
10


- > RAM Random Access Menory (direct access)
- ≻ ROM Read-Only Menory
- > The terms RAM and main memory are basically interchangeable
- > ROM could be a set of nenory chips, or a separate device, such as a CD ROM
- > Both RAM and ROM are random (direct) access devices!
- > RAM probably should be called Read-Write Memory

Compact Discs



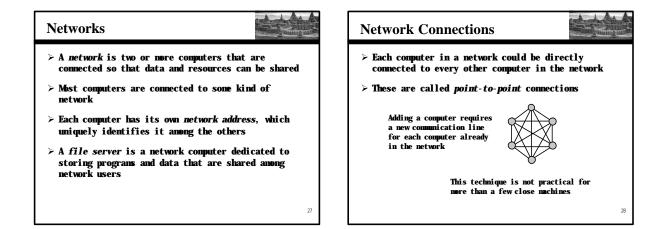

20

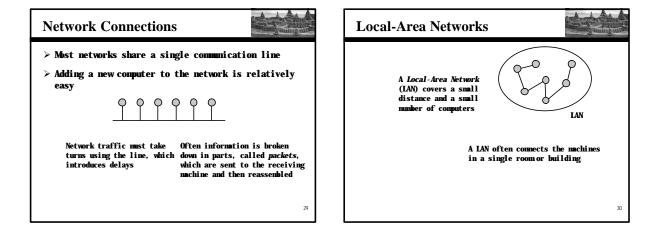

- > A CD-ROM is portable read-only memory
- > A nicroscopic pit on a CD represents a binary 1 and a smooth area represents a binary 0
- > A low-intensity laser reflects strongly from a smooth area and weakly from a pit
- > A CD-Recordable (CD-R) drive can be used to write information to a CD once
- > A CD-Rewritable (CD-RW) can be erased and reused
- > The speed of a CD drive describes how fast it can write information to a CD-R (24x), a CD-RW(10x), and how fast it can read (40x)

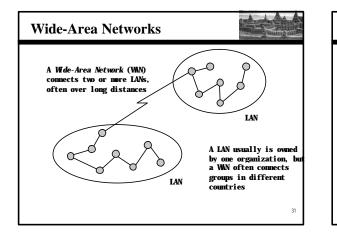
 > There are various recordable DVD technologies – the market will determine which will dominate

Monitor

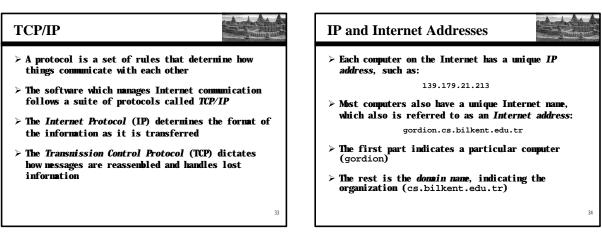
A STATE

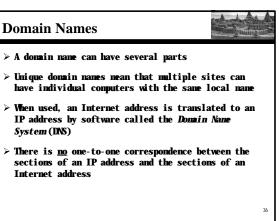

25


- > The size of a monitor (17") is measured diagonally, like a television screen
- > Most nonitors these days have *multimedia* capabilities: text, graphics, video, etc.
- A nonitor has a certain maximum resolution, indicating the number of picture elements, called pixels, that it can display (such as 1280 by 1024)
- > High resolution (nore pixels) produces sharper pictures


Modem

- > Data transfer devices allow information to be sent and received between computers
- > Many computers include a modulator-demodulator or nodem which allows information to be noved across a telephone line
- > A data transfer device has a maximum data transfer rate
- > A modem for instance, may have a data transfer rate of 56,000 *bits per second* (bps)




The Internet

- > The Internet is a WAN which spans the entire planet
- > The word Internet comes from the term internetworking, which implies communication among networks
- It started as a United States government project, sponsored by the Advanced Research Projects Agency (ARPA) - originally it was called the ARPANET
- > The Internet grew quickly throughout the 1980s and 90s
- > Less than 600 computers were connected to the Internet in 1983; by the year 2000 there were over 10 million

Domain Names	Doma
 > The last part of each domain name, called a top-level domain (TLD) indicates the type of organization: edu - educational institution com - connercial entity org - non-profit organization net - network-based organization Sometimes the suffix indicates the country: New TLDs have tr - Turkey recently been added: uk - United Kingdom au - Australia biz, info, tv, name ca - Canada 	 > A don > Uniquidave > When IP ad System > There section Interviolation
35	

The World Wide Web

- > The World Wide Web allows many different types of information to be accessed using a common interface
- > A browser is a program which accesses and presents information
 - text, graphics, video, sound, audio, executable programs
- > A Web document usually contains *links* to other Web documents, creating a *hypermedia* environment
- > The term Web comes from the fact that information is not organized in a linear fashion

The World Wide Web

- > Web documents are often defined using the HyperText Markup Language (HIM.)
- > Information on the Web is found using a Uniform Resource Locator (URL):

http://www.bilkent.edu.tr/information/student.html

http://www.google.com

ftp://java.sun.com/applets/animation.zip

> A URL indicates a protocol (http), a domain, and possibly specific documents

Problem Solving

37

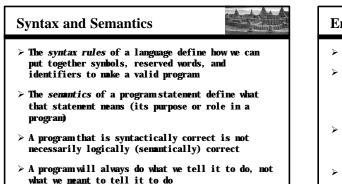
- > The purpose of writing a program is to solve a problem
- > The general steps in problem solving are:
 - Understand the problem
 - Dissect the problem into manageable pieces
 - Design a solution
 - Consider alternatives to the solution and refine it
 - Implement the solution
 - Test the solution and fix any problems that exist

Problem Solving > Many software projects fail because the developer didn't really understand the problem to be solved

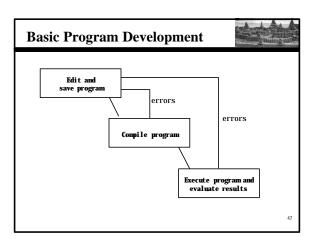
- > We must avoid assumptions and clarify ambiguities
- > As problems and their solutions become larger, we must organize our development into manageable pieces
- > This technique is fundamental to software development

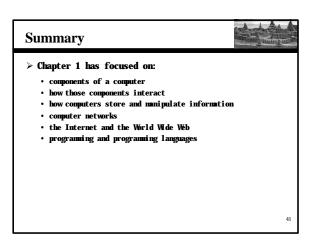
Programming Languages Language Levels > A programming language specifies the words and > There are four programming language levels: symbols that we can use to write a program • machine language • assembly language > A programming language employs a set of rules that • high-level language dictate how the words and symbols can be put • fourth-generation language together to form valid program statements > Each type of CPU has its own specific machine language > The other levels were created to make it easier for a human being to read and write programs

Basic High Level Languages


- > Inperative Languages
 Fortran, Algol, Cobol, Pascal, C, Ada
- Functional/ Logic Languages
 Lisp, M., Mranda, Schema
 Prolog
- Object-oriented Languages
 Smalltalk, C++, Java

Programming Languages


44


- A program must be translated into machine language before it can be executed on a particular type of CPU
- > This can be accomplished in several ways
- > A compiler is a software tool which translates source code into a specific target language
- > Often, that target language is the machine language for a particular CPU type

rrors	
A program can have three types of errors	
	_

- > The compiler will find syntax errors and other basic problems (compile-time errors)
 - If compile-time errors exist, an executable version of the program is not created
- > A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (*run-time errors*)
- > A program may run, but produce incorrect results, perhaps using an incorrect formula (*logical errors*)

