
1

Java Program Statements

Selim Aksoy
Bilkent University

Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Spring 2004 CS 111 2

Program Development
n The creation of software involves four

basic activities:
n establishing the requirements
n creating a design
n implementing the code
n testing the implementation

n The development process is much more
involved than this, but these are the
four basic development activities

Spring 2004 CS 111 3

Requirements
n Software requirements specify the tasks a

program must accomplish (what to do, not
how to do it)

n They often include a description of the user
interface

n An initial set of requirements often are
provided, but usually must be critiqued,
modified, and expanded

n Often it is difficult to establish detailed,
unambiguous, complete requirements

n Careful attention to the requirements can
save significant time and expense in the
overall project

Spring 2004 CS 111 4

Design
n A software design specifies how a program will

accomplish its requirements
n A design includes one or more algorithms to

accomplish its goal
n An algorithm is a step-by-step process for solving a

problem
n An algorithm may be expressed in pseudocode,

which is code-like, but does not necessarily follow
any specific syntax

n In object -oriented development, the design
establishes the classes, objects, methods, and data
that are required

Spring 2004 CS 111 5

Implementation
n Implementation is the process of translating a

design into source code
n Most novice programmers think that writing

code is the heart of software development,
but actually it should be the least creative
step

n Almost all important decisions are made
during requirements and design stages

n Implementation should focus on coding
details, including style guidelines and
documentation

Spring 2004 CS 111 6

Testing
n A program should be executed multiple

times with various input in an attempt
to find errors

n Debugging is the process of discovering
the causes of problems and fixing them

n Programmers often think erroneously
that there is "only one more bug" to fix

n Tests should consider design details as
well as overall requirements

2

Spring 2004 CS 111 7

Flow of Control
n Unless specified otherwise, the order of statement

execution through a method is linear: one statement
after the other in sequence

n Some programming statements modify that order,
allowing us to:
n decide whether or not to execute a particular statement, or
n perform a statement over and over, repetitively

n These decisions are based on a boolean expression
(also called a condition) that evaluates to true or
false

n The order of statement execution is called the flow of
control

Spring 2004 CS 111 8

Conditional Statements
n A conditional statement lets us choose

which statement will be executed next
n Therefore they are sometimes called

selection statements
n Conditional statements give us the

power to make basic decisions
n Java's conditional statements are

n the if statement
n the if-else statement
n the switch statement

Spring 2004 CS 111 9

The if Statement

n The if statement has the following
syntax:

if (condition)
statement;

if is a Java
reserved word

The condition must be a booleanexpression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

Spring 2004 CS 111 10

The if Statement

n An example of an if statement:

if (sum > MAX)
delta = sum - MAX;

System.out.println ("The sum is " + sum);

First, the condition is evaluated. The value of sum
is either greater than the value of MAX, or it is not.

If the condition is true, the assignment statement is executed.
If it is not, the assignment statement is skipped.

Either way, the call to println is executed next.

Spring 2004 CS 111 11

Logic of an if statement

condition
evaluated

false

statement

true

Spring 2004 CS 111 12

Boolean Expressions
n A condition often uses one of Java's equality

operators or relational operators, which all
return boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

n Note the difference between the equality
operator (==) and the assignment operator (=)

3

Spring 2004 CS 111 13

The if-else Statement
n An else clause can be added to an if

statement to make an if-else statement
if (condition)

statement1;
else

statement2;
n If the condition is true, statement1 is

executed; if the condition is false,
statement2 is executed

n One or the other will be executed, but not
both

Spring 2004 CS 111 14

Example
import java.text.NumberFormat;
import cs1.Keyboard;

public class Wages
{

//---
// Reads the number of hours worked and calculates wages.
//---
public static void main (String[] args)
{

final double RATE = 8.25; // regular pay rate
final int STANDARD = 40; // standard hours in a work week

double pay = 0.0;

System.out.print ("Enter the number of hours worked: ");
int hours = Keyboard.readInt();

System.out.println ();

// Pay overtime at "time and a half"
if (hours > STANDARD)

pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);
else

pay = hours * RATE;

NumberFormat fmt = NumberFormat.getCurrencyInstance();
System.out.println ("Gross earnings: " + fmt.format(pay));

}
}

Spring 2004 CS 111 15

Logic of an if-else statement

condition
evaluated

statement1

true false

statement2

Spring 2004 CS 111 16

Block Statements
n Several statements can be grouped

together into a block statement
n A block is delimited by braces : { … }
n A block statement can be used

wherever a statement is called for by
the Java syntax

n For example, in an if-else statement,
the if portion, or the else portion, or
both, could be block statements

Spring 2004 CS 111 17

Example
import cs1.Keyboard;
import java.util.Random;

public class Guessing
{

//---
// Plays a simple guessing game with the user.
//---
public static void main (String[] args)
{

final int MAX = 10;
int answer, guess;

Random generator = new Random();
answer = generator.nextInt(MAX) + 1;

System.out.print ("I'm thinking of a number between 1 and "
+ MAX + ". Guess what it is: ");

guess = Keyboard.readInt();

if (guess == answer)
System.out.println ("You got it! Good guessing!");

else
{

System.out.println ("That is not correct, sorry.");
System.out.println ("The number was " + answer);

}
}

}

Spring 2004 CS 111 18

Nested if Statements
n The statement executed as a result of an if

statement or else clause could be another
if statement

n These are called nested if statements
n An else clause is matched to the last

unmatched if (no matter what the
indentation implies)

n Braces can be used to specify the if
statement to which an else clause belongs

4

Spring 2004 CS 111 19

Example
import cs1.Keyboard;

public class MinOfThree
{

//---
// Reads three integers from the user and determines the smallest
// value.
//---
public static void main (String[] args)
{

int num1, num2, num3, min = 0;

System.out.println ("Enter three integers: ");
num1 = Keyboard.readInt();
num2 = Keyboard.readInt();
num3 = Keyboard.readInt();

if (num1 < num2)
if (num1 < num3)

min = num1;
else

min = num3;
else

if (num2 < num3)
min = num2;

else
min = num3;

System.out.println ("Minimum value: " + min);
}

}

Spring 2004 CS 111 20

The switch Statement
n The switch statement provides another

means to decide which statement to execute
next

n The switch statement evaluates an
expression, then attempts to match the result
to one of several possible cases

n Each case contains a value and a list of
statements

n The flow of control transfers to statement
associated with the first value that matches

Spring 2004 CS 111 21

The switch Statement

n The general syntax of a switch
statement is:

switch (expression)
{

case value1 :
statement-list1

case value2 :
statement-list2

case value3 :
statement-list3

case ...

}

switch
and
case
are

reserved
words

If expression
matches value2,
control jumps
to here

Spring 2004 CS 111 22

The switch Statement
n Often a break statement is used as the last

statement in each case's statement list
n A break statement causes control to transfer

to the end of the switch statement
n If a break statement is not used, the flow of

control will continue into the next case
n Sometimes this can be appropriate, but

usually we want to execute only the
statements associated with one case

Spring 2004 CS 111 23

The switch Statement
n A switch statement can have an optional default

case
n The default case has no associated value and simply

uses the reserved word default
n If the default case is present, control will transfer to

it if no other case value matches
n Though the default case can be positioned anywhere

in the switch, usually it is placed at the end
n If there is no default case, and no other value

matches, control falls through to the statement after
the switch

Spring 2004 CS 111 24

The switch Statement
n The expression of a switch statement must

result in an integral type, meaning an int or
a char

n It cannot be a boolean value, a floating
point value (float or double), a byte, a
short, or a long

n The implicit boolean condition in a switch
statement is equality - it tries to match the
expression with a value

n You cannot perform relational checks with a
switch statement

5

Spring 2004 CS 111 25

Example
import cs1.Keyboard;

public class GradeReport
{

//-- -
// Reads a grade from the user and prints comments accordingly.
//-- -
public static void main (String[] args)
{

int grade, category;

System.out.print ("Enter a numeric grade (0 to 100): ");
grade = Keyboard.readInt();

category = grade / 10;

System.out.print ("That grade is ");

switch (category)
{

case 10:
System.out.println ("a perfect score. Well done.");
break;

case 9:
System.out.println ("well above average. Excellent.");
break;

case 8:
System.out.println ("above average. Nice job.");
break;

case 7:
System.out.println ("average.");
break;

case 6:
System.out.println ("below average. You should see the");
System.out.println ("instructor to clarify the material "

+ "presented in class.");
break;

default:
System.out.println ("not passing.");

}
}

}

Spring 2004 CS 111 26

Logical Operators
n Boolean expressions can use the following

logical operators:
! Logical NOT
&& Logical AND
|| Logical OR

n They all take boolean operands and produce
boolean results

n Logical NOT is a unary operator (it operates
on one operand)

n Logical AND and logical OR are binary
operators (each operates on two operands)

Spring 2004 CS 111 27

Logical NOT
n The logical NOT operation is also called

logical negation or logical complement
n If some boolean condition a is true, then !a

is false; if a is false, then !a is true
n Logical expressions can be shown using truth

tables

truefalse
falsetrue
!aa

Spring 2004 CS 111 28

Logical AND and Logical OR

n The logical AND expression
a && b

is true if both a and b are true, and
false otherwise

n The logical OR expression
a || b

is true if a or b or both are true, and
false otherwise

Spring 2004 CS 111 29

Truth Tables
n A truth table shows the possible true/false

combinations of the terms
n Since && and || each have two operands,

there are four possible combinations of
conditions a and b

falsefalsefalsefalse
truefalsetruefalse
truefalsefalsetrue
truetruetruetrue

a || ba && bba

Spring 2004 CS 111 30

Logical Operators
n Conditions can use logical operators to form

complex expressions
if (total < MAX+5 && !found)

System.out.println ("Processing…");

n Logical operators have precedence
relationships among themselves and with
other operators
n all logical operators have lower precedence than

the relational or arithmetic operators
n logical NOT has higher precedence than logical

AND and logical OR

6

Spring 2004 CS 111 31

Short Circuited Operators

n The processing of logical AND and
logical OR is “short-circuited”

n If the left operand is sufficient to
determine the result, the right operand
is not evaluated

if (count != 0 && total/count > MAX)
System.out.println ("Testing…");

n This type of processing must be used
carefully

Spring 2004 CS 111 32

Truth Tables

n Specific expressions can be evaluated
using truth tables

falsefalsetruetrue
truetruefalsetrue
falsefalsetruefalse
falsetruefalsefalse

total < MAX &&
!found

!foundfoundtotal <
MAX

Spring 2004 CS 111 33

Comparing Characters
n We can use the relational operators on

character data
n The results are based on the Unicode character

set
n The following condition is true because the

character + comes before the character J in
the Unicode character set:

if ('+' < 'J')
System.out.println ("+ is less than J");

n The uppercase alphabet (A-Z) followed by the
lowercase alphabet (a-z) appear in alphabetical
order in the Unicode character set

Spring 2004 CS 111 34

Comparing Strings
n Remember that a character string in Java is

an object
n We cannot use the relational operators to

compare strings
n The equals method can be called with

strings to determine if two strings contain
exactly the same characters in the same
order

n The String class also contains a method
called compareTo to determine if one string
comes before another (based on the Unicode
character set)

Spring 2004 CS 111 35

Lexicographic Ordering
n Because comparing characters and strings is based

on a character set, it is called a lexicographic
ordering

n This is not strictly alphabetical when uppercase and
lowercase characters are mixed

n For example, the string "Great" comes before the
string "fantastic" because all of the uppercase
letters come before all of the lowercase letters in
Unicode

n Also, short strings come before longer strings with
the same prefix (lexicographically)

n Therefore "book" comes before "bookcase"

Spring 2004 CS 111 36

Comparing Float Values
n We also have to be careful when comparing

two floating point values (float or double)
for equality

n You should rarely use the equality operator
(==) when comparing two floats

n In many situations, you might consider two
floating point numbers to be "close enough"
even if they aren't exactly equal

n Therefore, to determine the equality of two
floats, you may want to use the following
technique:

if (Math.abs(f1 - f2) < 0.00001)
System.out.println ("Essentially equal.");

7

Spring 2004 CS 111 37

More Operators

n To round out our knowledge of Java
operators, let's examine a few more

n In particular, we will examine
n the increment and decrement operators
n the assignment operators
n the conditional operator

Spring 2004 CS 111 38

Increment and Decrement
n The increment and decrement operators are

arithmetic and operate on one operand
n The increment operator (++) adds one to its

operand
n The decrement operator (--) subtracts one

from its operand
n The statement

count++;

is functionally equivalent to
count = count + 1;

Spring 2004 CS 111 39

Increment and Decrement
n The increment and decrement

operators can be applied in prefix form
(before the operand) or postfix form
(after the operand)

n When used alone in a statement, the
prefix and postfix forms are functionally
equivalent. That is,

count++;
is equivalent to

++count;
Spring 2004 CS 111 40

Increment and Decrement
n When used in a larger expression, the prefix

and postfix forms have different effects
n In both cases the variable is incremented

(decremented)
n But the value used in the larger expression

depends on the form used:
Expression
count++
++count
count--
--count

Operation

add 1
add 1

subtract 1
subtract 1

Value Used in Expression

old value
new value
old value
new value

Spring 2004 CS 111 41

Increment and Decrement
n If count currently contains 45, then

the statement
total = count++;

assigns 45 to total and 46 to count
n If count currently contains 45, then

the statement
total = ++count;

assigns the value 46 to both total and
count

Spring 2004 CS 111 42

Assignment Operators
n Often we perform an operation on a

variable, and then store the result back
into that variable

n Java provides assignment operators to
simplify that process

n For example, the statement
num += count;

is equivalent to
num = num + count;

8

Spring 2004 CS 111 43

Assignment Operators

n There are many assignment operators,
including the following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

Spring 2004 CS 111 44

Assignment Operators
n The right hand side of an assignment

operator can be a complex expression
n The entire right-hand expression is evaluated

first, then the result is combined with the
original variable

n Therefore
result /= (total-MIN) % num;

is equivalent to
result = result / ((total-MIN) % num);

Spring 2004 CS 111 45

Assignment Operators
n The behavior of some assignment

operators depends on the types of the
operands

n If the operands to the += operator are
strings, the assignment operator
performs string concatenation

n The behavior of an assignment operator
(+=) is always consistent with the
behavior of the "regular" operator (+)

Spring 2004 CS 111 46

The Conditional Operator
n Java has a conditional operator that evaluates

a boolean condition that determines which of
two other expressions is evaluated

n The result of the chosen expression is the
result of the entire conditional operator

n Its syntax is:
condition ? expression1 : expression2

n If the condition is true, expression1 is
evaluated; if it is false, expression2 is
evaluated

Spring 2004 CS 111 47

The Conditional Operator
n The conditional operator is similar to an if-
else statement, except that it forms an
expression that returns a value

n For example:
larger = ((num1 > num2) ? num1 : num2);

n If num1 is greater that num2, then num1 is
assigned to larger; otherwise, num2 is
assigned to larger

n The conditional operator is ternary because it
requires three operands

Spring 2004 CS 111 48

The Conditional Operator

n Another example:
System.out.println("Your change is " + count +

((count == 1) ? "Dime" : "Dimes"));

n If count equals 1, then "Dime" is
printed

n If count is anything other than 1, then
"Dimes" is printed

9

Spring 2004 CS 111 49

Repetition Statements
n Repetition statements allow us to execute a

statement multiple times
n Often they are referred to as loops
n Like conditional statements, they are

controlled by boolean expressions
n Java has three kinds of repetition statements:

n the while loop
n the do loop
n the for loop

n The programmer should choose the right kind
of loop for the situation

Spring 2004 CS 111 50

The while Statement

n The while statement has the following
syntax:

while (condition)
statement;while is a

reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repeatedly until
the condition becomes false.

Spring 2004 CS 111 51

Logic of a while Loop

statement

true

condition
evaluated

false

Spring 2004 CS 111 52

The while Statement
n Note that if the condition of a while

statement is false initially, the
statement is never executed

n Therefore, the body of a while loop
will execute zero or more times

Spring 2004 CS 111 53

Example
//**
// Counter.java Author: Lewis/Loftus
//
// Demonstrates the use of a while loop.
//**

public class Counter
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 1;

while (count <= LIMIT)
{

System.out.println (count);
count = count + 1;

}

System.out.println ("Done");
}

}

Spring 2004 CS 111 54

Example
import java.text.DecimalFormat;
import cs1.Keyboard;

public class Average
{

//---
// Computes the average of a set of values entered by the user.
// The running sum is printed as the numbers are entered.
//---
public static void main (String[] args)
{

int sum = 0, value, count = 0;
double average;

System.out.print ("Enter an integer (0 to quit): ");
value = Keyboard.readInt();

while (value != 0) // sentinel value of 0 to terminate loop
{

count++;

sum += value;
System.out.println ("The sum so far is " + sum);

System.out.print ("Enter an integer (0 to quit): ");
value = Keyboard.readInt();

}

System.out.println ();
System.out.println ("Number of values entered: " + count);

average = (double)sum / count;

DecimalFormat fmt = new DecimalFormat ("0.###");
System.out.println ("The average is " + fmt.format(average));

}
}

A sentinel value indicates the end of the input
The variable sum maintains a running sum

10

Spring 2004 CS 111 55

Example
import java.text.NumberFormat;
import cs1.Keyboard;

public class WinPercentage
{

//---
// Computes the percentage of games won by a team.
//---
public static void main (String[] args)
{

final int NUM_GAMES = 12;
int won;
double ratio;

System.out.print ("Enter the number of games won (0 to "
+ NUM_GAMES + "): ");

won = Keyboard.readInt();

while (won < 0 || won > NUM_GAMES)
{

System.out.print ("Invalid input. Please reenter: ");
won = Keyboard.readInt();

}

ratio = (double)won / NUM_GAMES;

NumberFormat fmt = NumberFormat.getPercentInstance();

System.out.println ();
System.out.println ("Winning percentage: " + fmt.format(ratio));

}
}

A loop is used to validate the input,
making the program more robust

Spring 2004 CS 111 56

Infinite Loops
n The body of a while loop eventually

must make the condition false
n If not, it is an infinite loop, which will

execute until the user interrupts the
program

n This is a common logical error
n You should always double check to

ensure that your loops will terminate
normally

Spring 2004 CS 111 57

Example
//**
// Forever.java Author: Lewis/Loftus
//
// Demonstrates an INFINITE LOOP. WARNING!!
//**

public class Forever
{

//---
// Prints ever decreasing integers in an INFINITE LOOP!
//---
public static void main (String[] args)
{

int count = 1;

while (count <= 25)
{

System.out.println (count);
count = count - 1;

}

System.out.println ("Done"); // this statement is never reached
}

}

Spring 2004 CS 111 58

Nested Loops

n Similar to nested if statements, loops
can be nested as well

n That is, the body of a loop can contain
another loop

n Each time through the outer loop, the
inner loop goes through its full set of
iterations

Spring 2004 CS 111 59

Example
import cs1.Keyboard;

public class PalindromeTester
{

//---
// Tests strings to see if they are palindromes.
//---
public static void main (String[] args)
{

String str, another = "y";
int left, right;

while (another.equalsIgnoreCase("y")) // allows y or Y
{

System.out.println ("Enter a potential palindrome:");
str = Keyboard.readString();

left = 0;
right = str.length() - 1;

while (str.charAt(left) == str.charAt(right) && left < right)
{

left++;
right--;

}

System.out.println();

if (left < right)
System.out.println ("That string is NOT a palindrome.");

else
System.out.println ("That string IS a palindrome.");

System.out.println();
System.out.print ("Test another palindrome (y/n)? ");
another = Keyboard.readString();

}
}

}

Spring 2004 CS 111 60

The StringTokenizer Class
n The elements that comprise a string are

referred to as tokens
n The process of extracting these

elements is called tokenizing
n Characters that separate one token

from another are called delimiters
n The StringTokenizer class, which is

defined in the java.util package, is
used to separate a string into tokens

11

Spring 2004 CS 111 61

The StringTokenizer Class

n The default delimiters are space, tab,
carriage return, and the new line
characters

n The nextToken method returns the
next token (substring) from the string

n The hasMoreTokens returns a
boolean indicating if there are more
tokens to process

Spring 2004 CS 111 62

Example
import cs1.Keyboard;
import java.util.StringTokenizer;

public class CountWords
{

//---
// Reads several lines of text, counting the number of words
// and the number of non-space characters.
//---
public static void main (String[] args)
{

int wordCount = 0, characterCount = 0;
String line, word;
StringTokenizer tokenizer;

System.out.println ("Please enter text (type DONE to quit):");

line = Keyboard.readString();
while (!line.equals("DONE"))
{

tokenizer = new StringTokenizer (line);
while (tokenizer.hasMoreTokens())
{

word = tokenizer.nextToken();
wordCount++;
characterCount += word.length();

}
line = Keyboard.readString();

}

System.out.println ("Number of words: " + wordCount);
System.out.println ("Number of characters: " + characterCount);

}
}

Spring 2004 CS 111 63

The do Statement

n The do statement has the following
syntax:

do
{

statement;
}
while (condition)

do and
while are
reserved

words

The statement is executed once initially,
and then the condition is evaluated

The statement is executed repeatedly
until the condition becomes false

Spring 2004 CS 111 64

Logic of a do Loop

true

condition
evaluated

statement

false

Spring 2004 CS 111 65

The do Statement

n A do loop is similar to a while loop,
except that the condition is evaluated
after the body of the loop is executed

n Therefore the body of a do loop will
execute at least once

Spring 2004 CS 111 66

Example
//**
// Counter2.java Author: Lewis/Loftus
//
// Demonstrates the use of a do loop.
//**

public class Counter2
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 0;

do
{

count = count + 1;
System.out.println (count);

}
while (count < LIMIT);

System.out.println ("Done");
}

}

12

Spring 2004 CS 111 67

Example
import cs1.Keyboard;

public class ReverseNumber
{

//---
// Reverses the digits of an integer mathematically.
//---
public static void main (String[] args)
{

int number, lastDigit, reverse = 0;

System.out.print ("Enter a positive integer: ");
number = Keyboard.readInt();

do
{

lastDigit = number % 10;
reverse = (reverse * 10) + lastDigit;
number = number / 10;

}
while (number > 0);

System.out.println ("That number reversed is " + reverse);
}

}

Spring 2004 CS 111 68

Comparing while and do

statement

true

condition
evaluated

false

while loop

true

condition
evaluated

statement

false

do loop

Spring 2004 CS 111 69

The for Statement

n The for statement has the following
syntax:

for (initialization ; condition ; increment)
statement;

Reserved
word

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at the end of each iteration
The condition-statement-increment cycle is executed repeatedly

Spring 2004 CS 111 70

The for Statement

n A for loop is functionally equivalent to
the following while loop structure:

initialization;
while (condition)
{

statement;
increment;

}

Spring 2004 CS 111 71

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

Spring 2004 CS 111 72

The for Statement

n Like a while loop, the condition of a
for statement is tested prior to
executing the loop body

n Therefore, the body of a for loop will
execute zero or more times

n It is well suited for executing a loop a
specific number of times that can be
determined in advance

13

Spring 2004 CS 111 73

Example
//**
// Counter3.java Author: Lewis/Loftus
//
// Demonstrates the use of a for loop.
//**

public class Counter3
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;

for (int count=1; count <= LIMIT; count++)
System.out.println (count);

System.out.println ("Done");
}

}

Spring 2004 CS 111 74

Example
import cs1.Keyboard;

public class Multiples
{

//---
// Prints multiples of a user-specified number up to a user-
// specified limit.
//---
public static void main (String[] args)
{

final int PER_LINE = 5;
int value, limit, mult, count = 0;

System.out.print ("Enter a positive value: ");
value = Keyboard.readInt();

System.out.print ("Enter an upper limit: ");
limit = Keyboard.readInt();

System.out.println ();
System.out.println ("The multiples of " + value + " between " +

value + " and " + limit + " (inclusive) are:");

for (mult = value; mult <= limit; mult += value)
{

System.out.print (mult + "\t");

// Print a specific number of values per line of output
count++;
if (count % PER_LINE == 0)

System.out.println();
}

}
}

Spring 2004 CS 111 75

Example
//**
// Stars.java Author: Lewis/Loftus
//
// Demonstrates the use of nested for loops.
//**

public class Stars
{

//---
// Prints a triangle shape using asterisk (star) characters.
//---
public static void main (String[] args)
{

final int MAX_ROWS = 10;

for (int row = 1; row <= MAX_ROWS; row++)
{

for (int star = 1; star <= row; star++)
System.out.print ("*");

System.out.println();
}

}
}

Spring 2004 CS 111 76

The for Statement
n Each expression in the header of a for loop is

optional
n If the initialization is left out, no

initialization is performed
n If the condition is left out, it is always

considered to be true, and therefore creates an
infinite loop

n If the increment is left out, no increment
operation is performed

n Both semi-colons are always required in the
for loop header

Spring 2004 CS 111 77

Choosing a Loop Structure
n When you can’t determine how many times

you want to execute the loop body, use a
while statement or a do statement
n If it might be zero or more times, use a while

statement
n If it will be at least once, use a do statement

n If you can determine how many times you
want to execute the loop body, use a for
statement

Spring 2004 CS 111 78

Program Development
n We now have several additional statements

and operators at our disposal
n Following proper development steps is

important
n Suppose you were given some initial

requirements:
n accept a series of test scores
n compute the average test score
n determine the highest and lowest test scores
n display the average, highest, and lowest test

scores

14

Spring 2004 CS 111 79

Program Development
n Requirements Analysis – clarify and flesh out

specific requirements
n How much data will there be?
n How should data be accepted?
n Is there a specific output format required?

n After conferring with the client, we
determine:
n the program must process an arbitrary number of

test scores
n the program should accept input interactively
n the average should be presented to two decimal

places
n The process of requirements analysis may

take a long time Spring 2004 CS 111 80

Program Development
n Design – determine a possible general

solution
n Input strategy? (Sentinel value?)
n Calculations needed?

n An initial algorithm might be expressed in
pseudocode

n Multiple versions of the solution might be
needed to refine it

n Alternatives to the solution should be
carefully considered

Spring 2004 CS 111 81

Program Development
n Implementation – translate the design into

source code
n Make sure to follow coding and style

guidelines
n Implementation should be integrated with

compiling and testing your solution
n This process mirrors a more complex

development model we'll eventually need to
develop more complex software

n The result is a final implementation

Spring 2004 CS 111 82

Example
import java.text.DecimalFormat ;
import cs1.Keyboard;

public class ExamGrades
{

public static void main (String[] args)
{

int grade, count = 0, sum = 0, max, min;
double average;

// Get the first grade and give max and min that initial value
System.out.print ("Enter the first grade (-1 to quit): ");
grade = Keyboard.readInt ();

max = min = grade;

// Read and process the rest of the grades
while (grade >= 0)
{

count++;
sum += grade;

if (grade > max)
max = grade;

else
if (grade < min)

min = grade;

System.out.print ("Enter the next grade (-1 to quit): ");
grade = Keyboard.readInt ();

}

// Produce the final results
if (count == 0)

System.out.println ("No valid grades were entered.");
else
{

DecimalFormat fmt = new DecimalFormat ("0.##");
average = (double)sum / count;
System.out.println ();
System.out.println ("Total number of students: " + count);
System.out.println ("Average grade: " + fmt.format(average));
System.out.println ("Highest grade: " + max);
System.out.println ("Lowest grade: " + min);

}
}

}

Spring 2004 CS 111 83

Program Development

n Testing – attempt to find errors that
may exist in your programmed solution

n Compare your code to the design and
resolve any discrepancies

n Determine test cases that will stress the
limits and boundaries of your solution

n Carefully retest after finding and fixing
an error

