Java Review

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Java

= Java Basics
= Java Program Statements
= Conditional statements
= Repetition statements (loops)
= Writing Classes in Java
= Class definitions
= Encapsulation and Java modifiers

= Method declaration, invocation, and
parameter passing

= Method overloading

Spring 2004 cs 111 2

Programming Rules of Thumb

= Learn program patterns ofc(];eneral utility
(branching, loops, etc.) and use relevant
patterns for the problem at hand

= Seek inspiration by systematically working test
data by hand and ask yourself: “what am |
doing?”

= Declare variables for each piece of information
you maintain when working problem by hand

= Decompose problem into manageable tasks

= Remember the problem’s boundary conditions

= Validate your program by tracing it on test
data with known output

Spring 2004 cs 111 3

Introduction to Objects

= An object represents something with which
we can interact in a program

An object provides a collection of services
that we can tell it to perform for us

= The services are defined by methods in a
class that defines the object

A class represents a concept, and an object
represents the embodiment of a class

A class can be used to create multiple objects

Spring 2004 cs 111 4

Java Program Structure

= In the Java programming language:
= A program is made up of one or more classes
= A class contains one or more methods
= A method contains program statements

= Attributes/properties correspond to fields (or
variables)

= Behaviors/operations correspond to methods

= A Java application always contains a method
called mai n

Spring 2004 cs 111 5

Java Program Structure

public class MyProgram

{

class header

public static void main (String[] args)

class body {
method header
method body

}

Spring 2004 cs 111 6

Variables

= A variable is a name for a location in
memory

= A variable must be declared by
specifying the variable's name and the
type of information that it will hold

\

int total;

int count, tenp, result;

Spring 2004 cs 111 7

Primitive Data

= There are exactly eight primitive data types in
Java

= Four of them represent integers:
= byte, short,int,|ong

= Two of them represent floating point
numbers:
= float, doubl e

= One of them represents characters:
= char

= And one of them represents boolean values:
= bool ean

Spring 2004 cs 111 8

Numeric Primitive Data

= The difference between the various
numeric primitive types is their size,
and therefore the values they can store:

Type Storage Min Value Max Value
byt e 8 hits -128 127

short 16 hits -32,768 32,767

int 32 bits -2,147,483,648 2,147,483,647
| ong 64 bits < -9 x 1018 > 9 x 1018

f1 oat 32 bits +/- 3.4 x 10% with 7 significant digits
double 64 bits +/- 1.7 x 10%¢ with 15 significant digits

Spring 2004 cs 111 9

Arithmetic Expressions

= An expression is a combination of one
or more operands and their operators

= Arithmetic expressions use the

operators: Addition +
Subtraction -
Multiplication *
Division /
Remainder % (no ™ operator)

= If either or both operands associated
with an arithmetic operator are floating
point, the result is a floating point

Spring 2004 cs 111 10

Division and Remainder

= |f both operands to the division operator
(/) are integers, the result is an integer
(the fractional part is discarded)
14 / 3 equals? 4
8/ 12 equals? 0
= The remainder operator (%) returns the
remainder after dividing the second
operand into the first

14 % 3 equals? 2
8 %12 equals? 8
Spring 2004 CS 111 11

String Concatenation

= The string concatenation operator (+) is used
to append one string to the end of another

= The plus operator (+) is also used for
arithmetic addition

= The function that the + operator performs
depends on the type of the information on
which it operates

= If at least one operand is a string, it performs
string concatenation

= If both operands are numeric, it adds them
= The + operator is evaluated left to right
= Parentheses can be used to force the
operation order

Spring 2004 cs 111 12

Data Conversions

= InJava, data conversions can occur in three
ways:
= assignment conversion
= arithmetic promotion
= casting

= Assignment conversion occurs when a value
of one type is assigned to a variable of
another
= Only widening conversions can happen via

assignment

= Arithmetic promotion happens automatically
when operators in expressions convert their
operands

Spring 2004 cs 111

13

Data Conversions

= Casting is the most powerful, and dangerous,
technique for conversion

= Both widening and narrowing conversions can be
accomplished by explicitly casting a value

= To cast, the type is put in parentheses in front of
the value being converted

For example, if t ot al and count are

integers, but we want a floating point result
when dividing them, we can cast t ot al :

result = (float) total / count;

Spring 2004 cs 111 14

Creating Objects

= A variable holds either a primitive type or a
reference to an object

= A class name can be used as a type to
declare an object reference variable
String title;
= No object is created with this declaration

= An object reference variable holds the
address of an object

= The object itself must be created separately

Spring 2004 cs 111

15

Creating Objects

= Generally, we use the new operator to
create an object

title = new String ("Java Software Sol utions");

-)
'

= Creating an object is called instantiation

= An object is an instance of a particular
class

Spring 2004 cs 111 16

Conditional Statements

= A conditional statement lets us choose
which statement will be executed next
= Therefore they are sometimes called
selection statements
= Conditional statements give us the
power to make basic decisions
= Java's conditional statements are
= the if statement
= the if-else statement
= the switch statement

Spring 2004 cs 111

17

The if Statement

= The if statement has the following
syntax:

The condi tion must be a boolean expression.

if is a Java It must evaluate to either true or false.
reserved word
™~ if (condition)
stat enent 1;
el se
st at ement 2;

IT the condition is true, statenmentl is executed.
If it is false, statenent2 is executed.

Spring 2004 cs 111 18

Boolean Expressions

= A condition often uses one of Java's equality
operators or relational operators, which all
return boolean results:

== equal to

I= not equal to

< less than

> greater than

<= less than or equal to
>= greater than or equal to

= Note the difference between the equality
operator (==) and the assignment operator (=)

Spring 2004 cs 111 19

Logical Operators

= Boolean expressions can use the following
logical operators:
! Logical NOT
&% Logical AND
|| Logical OR
. The?/ all take boolean operands and produce
boolean results
= Logical NOT is a unary operator (it operates
on one operand)
= Logical AND and logical OR are binary
operators (each operates on two operands)

Spring 2004 cs 111 20

Repetition Statements

= Repetition statements allow us to execute a
statement multiple times

= Often they are referred to as loops

= Like conditional statements, they are
controlled by boolean expressions

= Java has three kinds of repetition statements:
= the while loop
= the do loop
= the for loop

= The programmer should choose the right kind
of loop for the situation

The while Statement

= The while statement has the following
syntax:

while (condition)

while isa— X
stat ement ;

reserved word

IT the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repeatedly until
the condi ti on becomes false.

Spring 2004 CS 111 21 Spring 2004 CS 111 22
Example The do Statement
S S saes

/1 Derpnstrates the use of a while | oop
11

public static void main (String[] args)

final int LIMT =5;
int count = 1;

while (count <= LIMT)

Systemout.println (count);
count = count + 1;

Systemout. println ("Done");

Spring 2004 cs 111 23

= The do statement has the following
syntax:
do

do and _— {

whil e are statenent;

reserved N}

words while (condition)

The statenent is executed once initially,
and then the condition is evaluated

The statenent is executed repeatedly
until the condition becomes false

Spring 2004 cs 111 24

The do Statement

= A do loop is similar to a whi | e loop,
except that the condition is evaluated
after the body of the loop is executed

= Therefore the body of a do loop will
execute at least once

Spring 2004 cs 111 25

Example

Counter2.java Author: Lewi s/ Lof tus

?ubhc static void main (String(] args)

final int LIMT =5;
int count = 0;

do

count = count + I1;
Systemout.println (count);

while (count < LIMT);
Systemout.println ("Done");

) }

Spring 2004 cs 111 26

Comparing while and do

while loop

Condition
evaluated

false

Spring 2004 cs 111 27

The for Statement

= The for statement has the following

syntax:
R " The initialization The statenent is
e;g::;e is executed once executed until the

before the loop begins condition becomes false

/

for (initialization ; condition ; increnent)
statenent;

The i ncrenent portion is executed at the end of each iteration
The condi tion-statenent-increnent cycle is executed repeatedly

Spring 2004 cs 111 28

The for Statement

= A for loop is functionally equivalent to
the following whi | e loop structure:

initialization,
while (condition)

statement;
increnent;

Spring 2004 cs 111 29

Logic of a for loop

Condition
gvaluated
true

statement
increment

false

Spring 2004 cs 111 30

The for Statement

= Like a whi | e loop, the condition of a
f or statement is tested prior to
executing the loop body

= Therefore, the body of a f or loop will
execute zero or more times

= It is well suited for executing a loop a
specific number of times that can be
determined in advance

Spring 2004 cs 111 31

Example

I/ Prints integer values from1 to a specific limt

public static void main (String[] args)

final int LIMT =5;

for (int count=1; count <= LIMT; count++)
Systemout.printin (count);

Systemout. println ("Done");

Spring 2004 cs 111 32

Choosing a Loop Structure

= When you can’t determine how many times
you want to execute the loop body, use a
whi | e statement or a do statement
= If it might be zero or more times, use a whi | e

statement

= If it will be at least once, use a do statement

= If you can determine how many times you
want to execute the loop body, use a f or
statement

Spring 2004 cs 111 33

The switch Statement

= The general syntax of a swi t ch

statement is:

switch (expression)

switch ~ case val uel :
and statenent-|ist1;
case br eak;
are case val ue2 :
reserved statement-1ist2;
words break;
case val ue3 : I expression
statenent-|ist3; matches val ue2,
br eak; control jumps
case ... to here
Spring 2004 } cs111 34

The switch Statement

= The expression of a swi t ch statement must
result in an integral type, meaning ani nt or
achar

= It cannot be a bool ean value, a floating
point value (f | oat or doubl €), a byte, a
short,oral ong

= The implicit boolean condition in a swi t ch
statement is equality - it tries to match the
expression with a value

= You cannot perform relational checks with a
sw t ch statement

Spring 2004 cs 111 35

Comparing Strings

Remember that a character string in Java is
an object

The equal s method can be called with
strings to determine if two strings contain
exactly the same characters in the same
order

The St ri ng class also contains a method
called conpar eTo to determine if one string
comes before another in lexicographic order
(based on the Unicode character set)

This is not strictly alphabetical when
uppercase and lowercase characters are
mixed

Spring 2004 cs 111 36

Comparing Float Values

= We also have to be careful when comparing
two floating point values (f | oat or doubl e)
for equality

= You should rarely use the equality operator
==) when comparing two floats

= In many situations, you might consider two
floatir)]g ﬁoint numbers to be "close enough”
even if they aren't exactly equal

= Therefore, to determine the equality of two
floats, you may want to use the following

technique:
if (Math.abs(fl - f2)
Systemout.println

0. 00001)

<
("Essentially equal.");

Spring 2004 cs 111 37

Increment and Decrement

= The increment and decrement operators are
arithmetic and operate on one operand
= The increment operator (++) adds one to its
operand
= The decrement operator (- -) subtracts one
from its operand
= The statement
count ++;
is functionally equivalent to
count = count + 1;

Spring 2004 cs 111 38

Assignment Operators

= There are many assignment operators,
including the following:

Operator Example Equivalent To

+= +=

+

*= *=

%

%

X X X X X
<K< < <
X X X X X
TRRTRRTRRTIT!
X X X X X
K<< <

o — %1
>

Spring 2004 cs 111 39

Objects and Classes

= An object has:
= state - descriptive characteristics
. beha)viors - what it can do (or what can be done

to it

= Aclass is the model or pattern from which
objects are created

= For example, consider a coin that can be
flipped so that it's face shows either "heads"
or "tails"

= The state of the coin is its current face
(heads or tails)

= The behavior of the coin is that it can be
flipped

Spring 2004 cs 111 40

Encapsulation

= We can take one of two views of an object:

= internal - the variables the object holds and the methods
that make the object useful

= external - the services that an object provides and how the
object interacts

= Any changes to the object's state (its variables)
should be made only by that object's methods

= We should make it difficult, if not impossible, to
access an object’s variables other than via its
methods

= The user, or client, of an object can request its
services, but it should not have to be aware of how
those services are accomplished

Spring 2004 cs 111 a1

Encapsulation

= An encapsulated object can be thought
of as a black box

= Its inner workings are hidden to the
client, which invokes only the interface
methods

Client - 1 Methods

Data

Spring 2004 cs 111 42

Visibility Modifiers

= In Java, we accomplish encapsulation through
the appropriate use of visibility modifiers

= A modifier is a Java reserved word that
specifies particular characteristics of a method
or data value

= Members of a class that are declared with
public visibility can be accessed from anywhere
(public variables violate encapsulation)

= Members of a class that are declared with
private visibility can only be accessed from
inside the class

Spring 2004 cs 111 43

Visibility Modifiers

public private

Variables Enforce.
encapsulation

Support other
methods in the
class

Provide services

Methods to clients

Spring 2004 cs 111 a4

Data Scope

= The scope of data is the area in a
program in which that data can be used
(referenced)

= Data declared at the class level can be
used by all methods in that class

= Data declared within a block (enclosed
within { and }, if statements, loops) can
be used only in that block

Spring 2004 cs 111 45

Example

import java.text. Nunber For mat ;

public class Account
{

inber For mat £t = Nunber For mat , get Cur rencyl nst ance() :
nal” doutle RATE 67055, ' TT" i Aferest “rate of 3. 5

11w e aceount by def ning Its owner,account nurber
77 and initial balar

publ i ¢ Account (SLring owner, |ong account, doubl e initial)

name = owner ;
acct Number = account ;
baance = inifial:

// Validates the transaction. |nen deposits ihe specified amount
Rt th al ance.

amount)

publ i ¢ doubl e deposi t (doubl &

| (amount < 0) [/ deposit value is negative

{
gstemou printin ():
Stemout printin { Ervor: Dogosi ¢ arount 1 1w

) Saemaun DHRIR acet rumber 2" 22" or e (amouni) ;
bal ance = bal ance + amount

return bal ance:

}
Spring 2004 cs 111 46

Example

L T
/1 Validates the transaction, then withdraws the specified amount
J1__fromthe account. Returns the new bal ance.

public doubl e withdraw (doubl e amount, doubl e fee)

{

amount += fee;

{f (amount < 0) 1/ withdraw value is negative
Systemout. printin ();
Systemout.printin ("Error: Wt hdmrmuum isinvalid.");

Systemout.println (“Account: “ + acctNul
SStemott Brintin (- RG0est ea 3 Tor it (amount)) ;
}
el se
f (amount > balance) // withdraw value exceeds bal ance
{
Systemout. printin ();
Systemout.println ("Error \n;umm ent funds.");
System out printin {"Account ct Nunber
SyStem out [printin ("Request ed: © s+ frt-or Mt (amount)) ;
Systemout. printin ("Available: * + fnt.format(bal ance));

el se
bal ance = bal ance - anount;

return bal ance;

Spring 2004 cs 111 a7

Example

public doubl e addinterest ()

bal ance += (bal ance * RATE);
|

return bal ance;
}
e e Lol
/1" Returns the current balance of the account
Jl eemm e
publ i ¢ doubl e get Bal ance ()
{
return balance;
}
1

public 1 ong get Account Nunber ()
return acct Nunber ;

}

public String tostring ()

return (acctNumber + “\t* + name + “\t* + fnt.fornat(balance));

}
Spring 2004 cs 111 48

Example

public class Banking

public static void min (Stringl] args)

Account acct 1 E“Ted Mirphy", 72354, 102.56);

Account acct2 = new “Jane Smth", 69713, 40.00);
Account acct3 = new ("Edward Denmsey", 93757, 759.32);
acct 1. deposit (25.85);
doubl e smi t hBal ance = acct2. deposit (500.00);
Systemout.println ("Snith bal ance after deposit: " +

sm t hBal ance) ;
Systemout.printin ("Smith balance after withdrawal: " +

t2.wi thdraw (430. 75, 1.50));
acct3.withdraw (800.00, 0.0); // exceeds bal ance
acct 1. addI nterest();

acct 2. addInterest();

acct 3. addl nt er est

Systemout.println ();
Systemout.println (acctl);
Systemout.println (acct2);
Systemout . printin (acct3);
}
}
Spring 2004 cs 111 49

Method Header and Body

return method
type name
parameter list
A

—
char calc (int nunl, int nun2, String nessage)

int sum= numl + nung;
char result = nessage.charAt (sum;

t It sumand resul t
return result; are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing
Spring 2004 cs 111 50

The return expression must be
consistent with the return type

The return Statement

= The return type of a method indicates the
type of value that the method sends back to
the calling location

= A method that does not return a value has a
voi d return type

= A return statement specifies the value that
will be returned

return expression;
= Its expression must conform to the return
type

Spring 2004 cs 111 51

Constructors Revisited

= Recall that a constructor is a special method
that is used to initialize a newly created
object

= When writing a constructor, remember that:

it has the same name as the class

it does not return a value

it has no return type, not even voi d

it typically sets the initial values of instance

variables

= The programmer does not have to define a
constructor for a class

Spring 2004 cs 111 52

Overloading Methods

= Method overloading is the process of using
the same method name for multiple methods

= The signature of each overloaded method
must be unique

= The signature includes the number, type, and
order of the parameters

= The compiler determines which version of the
method is being invoked by analyzing the
parameters

= The return type of the method is not part of
the signature

Spring 2004 cs 111 53

Overloading Methods

Version 1 Version 2
float tryMe (int x) float tryMe (int x, float y)
{ {
return x + .375; return x*y;
Invocation

result = tryMe (25, 4.32)

Spring 2004 cs 111 54

Object Relationships

= Some use associations occur between

objects of the same class

= For example, we might add two

Rat i onal number objects together as

follows:

r3 = rl. add(r2)
= One object (r 1) is executing the

method and another (r 2) is passed as a

parameter

Example

I R ona Auhor Lewi 5/ Lot tus

71 Represents one rational nunber vith a numerator and denoni nat or

bl cl ass Rati onal
s
private in numerator, denom nator

Set's up the rational nunber by snsuring a nonzera denom nator
anamaki ng only The nunerator” st gned

b ¢ Rt ol der e denor
¢

I{ Mk the purerator “store® the sign
(BeRoiwe o

denom = denom * -1

BeRHThSl or " aEbm:

reduce()

Returns the numerator of this raii onal number
Tt gethumeratar ()

Feturns the denom nator of (s rational nurber

pubi ¢ 1t get Donomt nator ()
¢

denort nator
)
Spring 2004 cs111 55 Spring 2004 cs111 56
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L e
{1 Peturns the reciprocal of this rational numger. [1° Miltiplies this rational nurber by the one passed as a
publ ¢ Rati onai reci procal () J]__pararet
retur Rati onal (denoni nator, numerator) public Rational multiply (Rational op2)
)
PP Ot numer = numerator + opa. getturerator ()
/1" Adds this rational number to the one passed as a parameter it denom = denom nat or *' 0p2. get Denom nat or () ;
17 A conmon’ denom nator 1§ found by milti piying the | ndivi duai
17 denom nat ors return new Rational (numer, denom):
Jubi ¢ Rational add (Rational op2) T }
. Il e s s e e e e e e e e eeasaeseeeeeseseeseeseeeeeeen
i commonDenen netof aoene, "a‘°;lmggmg;:m(";‘"' nator() 717 Divides this rational number by the one passed as a parameter
Pedenom nat of /1 by multiplying by the reciprocal of the second rational.
-
publ i c Rational divide (Rational op2)
retur Rational (sum commonDenoni nat or) {
i return mltiply (op2.reciprocal ());
..
/1 subtracts lhe vﬂl\onz\\ nunber passed as a parameter fromthis }
11 fati onal *nunby /
/1 Determines if this rational number is equal to the one passed
/1 as a parameter. Assunes they are both reduced
int commonDenom nator = denom nator * op2. get Denomi nator () ; /-
int numerator Uer at or - 002, get Denor nat o publ i ¢ bool ean equal s (Rational op2)
|7 RURer at o 3 = 6p2 gt Rlmer P ar £ P denom nat
int difference atorl - nunerator2; return (numerator op2. get Nurrer at or ()
y e Rational (difference, commnDenoni nator);) denoni nat or op2. get Denomi r‘amf())5
Spring 2004 cs111 57 Spring 2004 cs111 58
public class Rational Nunbers
Returns this rational number s a stri ng. t T
iie Sring tosring O 11" Greates some rational number objects and performs various
aring romute 11 operations on them
T .
(rureraor =0 public static void main (String(] args)
denprinatgr =) Rational r1 =new Rational (6, 8
Ratjonal r2 = new Rational (1, 3):
result = nunerator + + denom nat or Rational r3, r4, r5 r6, r7;
result
Syst em out pvlan " Fi rational number: " +ri);
System out ntin ("< d' Fational " nunber +T2);
Pedices U Yo onal murber by Gviding Bt e murerator
11 ond"the Wanom ator by iherr ofeat st s . g1 equal s(12))
i dree ystem out. printin (“r1and r2 are equal.*);
(numerator 1) ° . 2 s
i1t commn = ged (Mt abs(nuerator) . denam nator) “Systemout printin (11 and 12 are NOT equal)
nunerator = numerator 1 13 = r1.reciprocal ()
e e or Gt 1 Gomon Systemout. printin reciprocal of riis: ' +r3);
)
14 = riadd(r2);
ot and vt urvs 11 oralsat cormon 41 visor of (e v 15 = ri subtract(r2);
PorTi1Ve pavanstors: bes Euml 13 5 a1 ors 16 = rimitiply(r2);
e (1 nud T o) 17 201 Givide(19);
! Xﬂiw“n‘&"y‘” Systemout.printin ("r +r4);
e nune. Systemout printin ('r +05);
g = nune - nunt Systemout.printin ("r +16)
o , Sstemout printin (r +r7)
i ! }
Spring 2004 cs111 59 Spring 2004 cs111 60

Example

public class Address

private String streetAddress, city, state;
private Iong zi pCode;

/
publ i ¢ Address (String street, String town, String st, |ong zip)

street Address = street;
city town;

state = st;

zipCode = zip;

!
I/ Returns this Address object as a string.

11
public String toString()

Example

public class Student
{

private String firstName, |astNane;
private Address homeAddress, school Address;

public Student (String first, String last, Address home,
Address school)

honeAddr ess = home;
school Address = school ;

ublic String toString()
String result;
+ lastName + “\n";

result = firstNane +

String result; -
result += "Home Address:\n® + homeAddress + "\n";
result = streetAddress + "\n"; result + Address:\n” + school Addr ess;
result +=city + ", " + state + " " + zipCode;
return result;
) return result; }
}
Spring 2004 cs 111 61 Spring 2004 cs 111 62

Example

T T
H St udent Body. j ava Aut hor: Lewi s/ Lof tus
/| Demonstrates the use of an aggregate class.
R e T L Ll r Lt Tt et R
public class StudentBody
{
public static void main (String[] args)
{ Address school = new Address ("800 Lancaster Ave.”, "Villanova",
" PA" 085);
Address j Home = new Address ("21 Junp Street”, "Lynchburg”,
"VA', 24551);
Student john = new Student ("John", "Smith", jHome, school);
Address mHome = n Address ("123 Main Street”, "Euclid", "OH",
32);
Student marsha = new Student ("Marsha", "Jones", ntHome, school);
Systemout.println (john);
Systemout.println ();
) Systemout. println (marsha);
}

Spring 2004 cs 111 63

