
1

Java Review

Selim Aksoy
Bilkent University

Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Spring 2004 CS 111 2

Java
n Java Basics
n Java Program Statements

n Conditional statements
n Repetition statements (loops)

n Writing Classes in Java
n Class definitions
n Encapsulation and Java modifiers
n Method declaration, invocation, and

parameter passing
n Method overloading

Spring 2004 CS 111 3

Programming Rules of Thumb
n Learn program patterns of general utility

(branching, loops, etc.) and use relevant
patterns for the problem at hand

n Seek inspiration by systematically working test
data by hand and ask yourself: “what am I
doing?”

n Declare variables for each piece of information
you maintain when working problem by hand

n Decompose problem into manageable tasks
n Remember the problem’s boundary conditions
n Validate your program by tracing it on test

data with known output
Spring 2004 CS 111 4

Introduction to Objects
n An object represents something with which

we can interact in a program
n An object provides a collection of services

that we can tell it to perform for us
n The services are defined by methods in a

class that defines the object
n A class represents a concept, and an object

represents the embodiment of a class
n A class can be used to create multiple objects

Spring 2004 CS 111 5

Java Program Structure
n In the Java programming language:

n A program is made up of one or more classes
n A class contains one or more methods
n A method contains program statements

n Attributes/properties correspond to fields (or
variables)

n Behaviors/operations correspond to methods
n A Java application always contains a method

called main

Spring 2004 CS 111 6

Java Program Structure

public class MyProgram
{

}

public static void main (String[] args)

{

}

// comments about the class

// comments about the method

method header
method body

class body

class header

2

Spring 2004 CS 111 7

Variables
n A variable is a name for a location in

memory
n A variable must be declared by

specifying the variable's name and the
type of information that it will hold

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

Spring 2004 CS 111 8

Primitive Data
n There are exactly eight primitive data types in

Java
n Four of them represent integers:

n byte, short, int, long
n Two of them represent floating point

numbers:
n float, double

n One of them represents characters:
n char

n And one of them represents boolean values:
n boolean

Spring 2004 CS 111 9

Numeric Primitive Data

n The difference between the various
numeric primitive types is their size,
and therefore the values they can store:
Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 101 8

+/- 3.4 x 103 8 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 101 8

Spring 2004 CS 111 10

Arithmetic Expressions

n An expression is a combination of one
or more operands and their operators

n Arithmetic expressions use the
operators:

n If either or both operands associated
with an arithmetic operator are floating
point, the result is a floating point

Addition +
Subtraction -
Multiplication *
Division /
Remainder % (no ^ operator)

Spring 2004 CS 111 11

Division and Remainder

n If both operands to the division operator
(/) are integers, the result is an integer
(the fractional part is discarded)

n The remainder operator (%) returns the
remainder after dividing the second
operand into the first

14 / 3 equals?

8 / 12 equals?

4

0

14 % 3 equals?

8 % 12 equals?

2
8

Spring 2004 CS 111 12

String Concatenation
n The string concatenation operator (+) is used

to append one string to the end of another
n The plus operator (+) is also used for

arithmetic addition
n The function that the + operator performs

depends on the type of the information on
which it operates
n If at least one operand is a string, it performs

string concatenation
n If both operands are numeric, it adds them

n The + operator is evaluated left to right
n Parentheses can be used to force the

operation order

3

Spring 2004 CS 111 13

Data Conversions
n In Java, data conversions can occur in three

ways:
n assignment conversion
n arithmetic promotion
n casting

n Assignment conversion occurs when a value
of one type is assigned to a variable of
another
n Only widening conversions can happen via

assignment
n Arithmetic promotion happens automatically

when operators in expressions convert their
operands

Spring 2004 CS 111 14

Data Conversions
n Casting is the most powerful, and dangerous,

technique for conversion
n Both widening and narrowing conversions can be

accomplished by explicitly casting a value
n To cast, the type is put in parentheses in front of

the value being converted
n For example, if total and count are

integers, but we want a floating point result
when dividing them, we can cast total:

result = (float) total / count;

Spring 2004 CS 111 15

Creating Objects
n A variable holds either a primitive type or a

reference to an object
n A class name can be used as a type to

declare an object reference variable
String title;

n No object is created with this declaration
n An object reference variable holds the

address of an object
n The object itself must be created separately

Spring 2004 CS 111 16

Creating Objects

n Generally, we use the new operator to
create an object

n Creating an object is called instantiation
n An object is an instance of a particular

class

title = new String ("Java Software Solutions");

This calls the String constructor, which is
a special method that sets up the object

Spring 2004 CS 111 17

Conditional Statements
n A conditional statement lets us choose

which statement will be executed next
n Therefore they are sometimes called

selection statements
n Conditional statements give us the

power to make basic decisions
n Java's conditional statements are

n the if statement
n the if-else statement
n the switch statement

Spring 2004 CS 111 18

The if Statement

n The if statement has the following
syntax:

if (condition)
statement1;

else
statement2;

if is a Java
reserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, statement1 is executed.
If it is false, statement2 is executed.

4

Spring 2004 CS 111 19

Boolean Expressions
n A condition often uses one of Java's equality

operators or relational operators, which all
return boolean results:

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

n Note the difference between the equality
operator (==) and the assignment operator (=)

Spring 2004 CS 111 20

Logical Operators
n Boolean expressions can use the following

logical operators:
! Logical NOT
&& Logical AND
|| Logical OR

n They all take boolean operands and produce
boolean results

n Logical NOT is a unary operator (it operates
on one operand)

n Logical AND and logical OR are binary
operators (each operates on two operands)

Spring 2004 CS 111 21

Repetition Statements
n Repetition statements allow us to execute a

statement multiple times
n Often they are referred to as loops
n Like conditional statements, they are

controlled by boolean expressions
n Java has three kinds of repetition statements:

n the while loop
n the do loop
n the for loop

n The programmer should choose the right kind
of loop for the situation

Spring 2004 CS 111 22

The while Statement

n The while statement has the following
syntax:

while (condition)
statement;while is a

reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repeatedly until
the condition becomes false.

Spring 2004 CS 111 23

Example
//**
// Counter.java Author: Lewis/Loftus
//
// Demonstrates the use of a while loop.
//**

public class Counter
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 1;

while (count <= LIMIT)
{

System.out.println (count);
count = count + 1;

}

System.out.println ("Done");
}

}

Spring 2004 CS 111 24

The do Statement

n The do statement has the following
syntax:

do
{

statement;
}
while (condition)

do and
while are
reserved
words

The statement is executed once initially,
and then the condition is evaluated

The statement is executed repeatedly
until the condition becomes false

5

Spring 2004 CS 111 25

The do Statement

n A do loop is similar to a while loop,
except that the condition is evaluated
after the body of the loop is executed

n Therefore the body of a do loop will
execute at least once

Spring 2004 CS 111 26

Example
//**
// Counter2.java Author: Lewis/Loftus
//
// Demonstrates the use of a do loop.
//**

public class Counter2
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;
int count = 0;

do
{

count = count + 1;
System.out.println (count);

}
while (count < LIMIT);

System.out.println ("Done");
}

}

Spring 2004 CS 111 27

Comparing while and do

statement

true

condition
evaluated

false

while loop

true

condition
evaluated

statement

false

do loop

Spring 2004 CS 111 28

The for Statement

n The for statement has the following
syntax:

for (initialization ; condition ; increment)
statement;

Reserved
word

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at the end of each iteration
The condition-statement-increment cycle is executed repeatedly

Spring 2004 CS 111 29

The for Statement

n A for loop is functionally equivalent to
the following while loop structure:

initialization;
while (condition)
{

statement;
increment;

}

Spring 2004 CS 111 30

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

6

Spring 2004 CS 111 31

The for Statement

n Like a while loop, the condition of a
for statement is tested prior to
executing the loop body

n Therefore, the body of a for loop will
execute zero or more times

n It is well suited for executing a loop a
specific number of times that can be
determined in advance

Spring 2004 CS 111 32

Example
//**
// Counter3.java Author: Lewis/Loftus
//
// Demonstrates the use of a for loop.
//**

public class Counter3
{

//---
// Prints integer values from 1 to a specific limit.
//---
public static void main (String[] args)
{

final int LIMIT = 5;

for (int count=1; count <= LIMIT; count++)
System.out.println (count);

System.out.println ("Done");
}

}

Spring 2004 CS 111 33

Choosing a Loop Structure
n When you can’t determine how many times

you want to execute the loop body, use a
while statement or a do statement
n If it might be zero or more times, use a while

statement
n If it will be at least once, use a do statement

n If you can determine how many times you
want to execute the loop body, use a for
statement

Spring 2004 CS 111 34

The switch Statement

n The general syntax of a switch
statement is:

switch (expression)
{

case value1 :
statement-list1;
break;

case value2 :
statement-list2;
break;

case value3 :
statement-list3;
break;

case ...
}

switch
and
case
are

reserved
words

If expression
matches value2,
control jumps
to here

Spring 2004 CS 111 35

The switch Statement
n The expression of a switch statement must

result in an integral type, meaning an int or
a char

n It cannot be a boolean value, a floating
point value (float or double), a byte, a
short, or a long

n The implicit boolean condition in a switch
statement is equality - it tries to match the
expression with a value

n You cannot perform relational checks with a
switch statement

Spring 2004 CS 111 36

Comparing Strings
n Remember that a character string in Java is

an object
n The equals method can be called with

strings to determine if two strings contain
exactly the same characters in the same
order

n The String class also contains a method
called compareTo to determine if one string
comes before another in lexicographic order
(based on the Unicode character set)

n This is not strictly alphabetical when
uppercase and lowercase characters are
mixed

7

Spring 2004 CS 111 37

Comparing Float Values
n We also have to be careful when comparing

two floating point values (float or double)
for equality

n You should rarely use the equality operator
(==) when comparing two floats

n In many situations, you might consider two
floating point numbers to be "close enough"
even if they aren't exactly equal

n Therefore, to determine the equality of two
floats, you may want to use the following
technique:
if (Math.abs(f1 - f2) < 0.00001)

System.out.println ("Essentially equal.");

Spring 2004 CS 111 38

Increment and Decrement
n The increment and decrement operators are

arithmetic and operate on one operand
n The increment operator (++) adds one to its

operand
n The decrement operator (--) subtracts one

from its operand
n The statement

count++;

is functionally equivalent to
count = count + 1;

Spring 2004 CS 111 39

Assignment Operators

n There are many assignment operators,
including the following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

Spring 2004 CS 111 40

Objects and Classes
n An object has:

n state - descriptive characteristics
n behaviors - what it can do (or what can be done

to it)
n A class is the model or pattern from which

objects are created
n For example, consider a coin that can be

flipped so that it's face shows either "heads"
or "tails"

n The state of the coin is its current face
(heads or tails)

n The behavior of the coin is that it can be
flipped

Spring 2004 CS 111 41

Encapsulation
n We can take one of two views of an object:

n internal - the variables the object holds and the methods
that make the object useful

n external - the services that an object provides and how the
object interacts

n Any changes to the object's state (its variables)
should be made only by that object's methods

n We should make it difficult, if not impossible, to
access an object’s variables other than via its
methods

n The user, or client , of an object can request its
services, but it should not have to be aware of how
those services are accomplished

Spring 2004 CS 111 42

Encapsulation

n An encapsulated object can be thought
of as a black box

n Its inner workings are hidden to the
client, which invokes only the interface
methods

Client Methods

Data

8

Spring 2004 CS 111 43

Visibility Modifiers
n In Java, we accomplish encapsulation through

the appropriate use of visibility modifiers
n A modifier is a Java reserved word that

specifies particular characteristics of a method
or data value

n Members of a class that are declared with
public visibility can be accessed from anywhere
(public variables violate encapsulation)

n Members of a class that are declared with
private visibility can only be accessed from
inside the class

Spring 2004 CS 111 44

Visibility Modifiers

public private

Variables

Methods

Violate
encapsulation

Enforce
encapsulation

Provide services
to clients

Support other
methods in the

class

Spring 2004 CS 111 45

Data Scope

n The scope of data is the area in a
program in which that data can be used
(referenced)

n Data declared at the class level can be
used by all methods in that class

n Data declared within a block (enclosed
within { and }, if statements, loops) can
be used only in that block

Spring 2004 CS 111 46

Example
import java.text.NumberFormat;

public class Account
{

private NumberFormat fmt = NumberFormat.getCurrencyInstance();
private final double RATE = 0.035; // interest rate of 3.5%
private long acctNumber;
private double balance;
private String name;

//---
// Sets up the account by defining its owner, account number,
// and initial balance.
//---
public Account (String owner, long account, double initial)
{

name = owner;
acctNumber = account;
balance = initial;

}

//---
// Validates the transaction, then deposits the specified amount
// into the account. Returns the new balance.
//---
public double deposit (double amount)
{

if (amount < 0) // deposit value is negative
{

System.out.println ();
System.out.println ("Error: Deposit amount is invalid.");
System.out.println (acctNumber + " " + fmt.format(amount));

}
else

balance = balance + amount;

return balance;
}

…

Spring 2004 CS 111 47

Example
…

//---
// Validates the transaction, then withdraws the specified amount
// from the account. Returns the new balance.
//---
public double withdraw (double amount, double fee)
{

amount += fee;

if (amount < 0) // withdraw value is negative
{

System.out.println ();
System.out.println ("Error: Withdraw amount is invalid.");
System.out.println ("Account: " + acctNumber);
System.out.println ("Requested: " + fmt.format(amount));

}
else

if (amount > balance) // withdraw value exceeds balance
{

System.out.println ();
System.out.println ("Error: Insufficient funds.");
System.out.println ("Account: " + acctNumber);
System.out.println ("Requested: " + fmt.format(amount));
System.out.println ("Available: " + fmt.format(balance));

}
else

balance = balance - amount;

return balance;
}

…

Spring 2004 CS 111 48

Example
…

//---
// Adds interest to the account and returns the new balance.
//---
public double addInterest ()
{

balance += (balance * RATE);
return balance;

}

//---
// Returns the current balance of the account.
//---
public double getBalance ()
{

return balance;
}

//---
// Returns the account number.
//---
public long getAccountNumber ()
{

return acctNumber;
}

//---
// Returns a one-line description of the account as a string.
//---
public String toString ()
{

return (acctNumber + "\t" + name + "\t" + fmt.format(balance));
}

}

9

Spring 2004 CS 111 49

Example
public class Banking
{

//---
// Creates some bank accounts and requests various services.
//---
public static void main (String[] args)
{

Account acct1 = new Account ("Ted Murphy", 72354, 102.56);
Account acct2 = new Account ("Jane Smith", 69713, 40.00);
Account acct3 = new Account ("Edward Demsey", 93757, 759.32);

acct1.deposit (25.85);
double smithBalance = acct2.deposit (500.00);
System.out.println ("Smith balance after deposit: " +

smithBalance);
System.out.println ("Smith balance after withdrawal: " +

acct2.withdraw (430.75, 1.50));
acct3.withdraw (800.00, 0.0); // exceeds balance
acct1.addInterest();
acct2.addInterest();
acct3.addInterest();

System.out.println ();
System.out.println (acct1);
System.out.println (acct2);
System.out.println (acct3);

}
}

Spring 2004 CS 111 50

Method Header and Body

char calc (int num1, int num2, String message)
{

int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

method
name

return
type

parameter list

Spring 2004 CS 111 51

The return Statement
n The return type of a method indicates the

type of value that the method sends back to
the calling location

n A method that does not return a value has a
void return type

n A return statement specifies the value that
will be returned

return expression;
n Its expression must conform to the return

type
Spring 2004 CS 111 52

Constructors Revisited
n Recall that a constructor is a special method

that is used to initialize a newly created
object

n When writing a constructor, remember that:
n it has the same name as the class
n it does not return a value
n it has no return type, not even void
n it typically sets the initial values of instance

variables
n The programmer does not have to define a

constructor for a class

Spring 2004 CS 111 53

Overloading Methods
n Method overloading is the process of using

the same method name for multiple methods
n The signature of each overloaded method

must be unique
n The signature includes the number, type, and

order of the parameters
n The compiler determines which version of the

method is being invoked by analyzing the
parameters

n The return type of the method is not part of
the signature

Spring 2004 CS 111 54

Overloading Methods

float tryMe (int x)
{

return x + .375;
}

Version 1

float tryMe (int x, float y)
{

return x*y;
}

Version 2

result = tryMe (25, 4.32)

Invocation

10

Spring 2004 CS 111 55

Object Relationships
n Some use associations occur between

objects of the same class
n For example, we might add two
Rational number objects together as
follows:

r3 = r1.add(r2);
n One object (r1) is executing the

method and another (r2) is passed as a
parameter

Spring 2004 CS 111 56

Example
//**
// Rational.java Author: Lewis/Loftus
//
// Represents one rational number with a numerator and denominator.
//**

public class Rational
{

private int numerator, denominator;

//---
// Sets up the rational number by ensuring a nonzero denominato r
// and making only the numerator signed.
//---
public Rational (int numer, int denom)
{

if (denom == 0)
denom = 1;

// Make the numerator "store" the sign
if (denom < 0)
{

numer = numer * -1;
denom = denom * -1;

}

numerator = numer;
denominator = denom ;

reduce();
}

//---
// Returns the numerator of this rational number.
//---
public int getNumerator ()
{

return numerator;
}

//---
// Returns the denominator of this rational number.
//---
public int getDenominator ()
{

return denominator;
}

…

Spring 2004 CS 111 57

Example
…

//---
// Returns the reciprocal of this rational number.
//---
public Rational reciprocal ()
{

return new Rational (denominator, numerator);
}

//---
// Adds this rational number to the one passed as a parameter.
// A common denominator is found by multiplying the individual
// denominators.
//---
public Rational add (Rational op2)
{

int commonDenominator = denominator * op2.getDenominator();
int numerator1 = numerator * op2.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int sum = numerator1 + numerator2;

return new Rational (sum, commonDenominator);
}

//---
// Subtracts the rational number passed as a parameter from this
// rational number.
//---
public Rational subtract (Rational op2)
{

int commonDenominator = denominator * op2.getDenominator();
int numerator1 = numerator * op2.getDenominator();
int numerator2 = op2.getNumerator() * denominator;
int difference = numerator1 - numerator2;

return new Rational (difference, commonDenominator);
}

…

Spring 2004 CS 111 58

Example
…

//---
// Multiplies this rational number by the one passed as a
// parameter.
//---
public Rational multiply (Rational op2)
{

int numer = numerator * op2.getNumerator();
int denom = denominator * op2.getDenominator();

return new Rational (numer, denom);
}

//---
// Divides this rational number by the one passed as a parameter
// by multiplying by the reciprocal of the second rational.
//---
public Rational divide (Rational op2)
{

return multiply (op2.reciprocal());
}

//---
// Determines if this rational number is equal to the one passed
// as a parameter. Assumes they are both reduced.
//---
public boolean equals (Rational op2)
{

return (numerator == op2.getNumerator() &&
denominator == op2.getDenominator());

}
…

Spring 2004 CS 111 59

Example
…

//---
// Returns this rational number as a string.
//---
public String toString ()
{

String result;

if (numerator == 0)
result = "0";

else
if (denominator == 1)

result = numerator + "";
else

result = numerator + "/" + denominator;

return result;
}

//---
// Reduces this rational number by dividing both the numerator
// and the denominator by their greatest common divisor.
//---
private void reduce ()
{

if (numerator != 0)
{

int common = gcd (Math.abs(numerator), denominator);

numerator = numerator / common;
denominator = denominator / common;

}
}

//---
// Computes and returns the greatest common divisor of the two
// positive parameters. Uses Euclid's algorithm.
//---
private int gcd (int num1, int num2)
{

while (num1 != num2)
if (num1 > num2)

num1 = num1 - num2;
else

num2 = num2 - num1;

return num1;
}

}

Spring 2004 CS 111 60

Example
public class RationalNumbers
{

//---
// Creates some rational number objects and performs various
// operations on them.
//---
public static void main (String[] args)
{

Rational r1 = new Rational (6, 8);
Rational r2 = new Rational (1, 3);
Rational r3, r4, r5, r6, r7;

System.out.println ("First rational number: " + r1);
System.out.println ("Second rational number: " + r2);

if (r1.equals(r2))
System.out.println ("r1 and r2 are equal.");

else
System.out.println ("r1 and r2 are NOT equal.");

r3 = r1.reciprocal();
System.out.println ("The reciprocal of r1 is: " + r3);

r4 = r1.add(r2);
r5 = r1.subtract(r2);
r6 = r1.multiply(r2);
r7 = r1.divide(r2);

System.out.println ("r1 + r2: " + r4);
System.out.println ("r1 - r2: " + r5);
System.out.println ("r1 * r2: " + r6);
System.out.println ("r1 / r2: " + r7);

}
}

11

Spring 2004 CS 111 61

Example
public class Address
{

private String streetAddress, city, state;
private long zipCode;

//---
// Sets up this Address object with the specified data.
//---
public Address (String street, String town, String st, long zip)
{

streetAddress = street;
city = town;
state = st;
zipCode = zip;

}

//---
// Returns this Address object as a string.
//---
public String toString()
{

String result;

result = streetAddress + "\n";
result += city + ", " + state + " " + zipCode;

return result;
}

}
Spring 2004 CS 111 62

Example
public class Student
{

private String firstName, lastName;
private Address homeAddress, schoolAddress;

//---
// Sets up this Student object with the specified initial values.
//---
public Student (String first, String last, Address home,

Address school)
{

firstName = first;
lastName = last;
homeAddress = home;
schoolAddress = school;

}

//---
// Returns this Student object as a string.
//---
public String toString()
{

String result;

result = firstName + " " + lastName + "\n";
result += "Home Address:\n" + homeAddress + "\n";
result += "School Address:\n" + schoolAddress;

return result;
}

}

Spring 2004 CS 111 63

Example
//**
// StudentBody.java Author: Lewis/Loftus
//
// Demonstrates the use of an aggregate class.
//**

public class StudentBody
{

//---
// Creates some Address and Student objects and prints them.
//---
public static void main (String[] args)
{

Address school = new Address ("800 Lancaster Ave.", "Villanova",
"PA", 19085);

Address jHome = new Address ("21 Jump Street", "Lynchburg",
"VA", 24551);

Student john = new Student ("John", "Smith", jHome, school);

Address mHome = new Address ("123 Main Street", "Euclid", "OH",
44132);

Student marsha = new Student ("Marsha", "Jones", mHome, school);

System.out.println (john);
System.out.println ();
System.out.println (marsha);

}
}

