Input/Output Functions

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

MATLAB Basics: Data Files

= save filename varl var2 ...

= save homework.mat x y ® binary
= save x.dat x —ascii ® ascii

= load filename
= load filename.mat ® binary
= load x.dat —ascii ® ascii

Spring 2004 cs 111 2

The textread Function

= It is designed to read ASCII files that
are formatted into columns of data

= Each column can be of a different type

= It is useful for importing tables of data
printed out by other applications

Spring 2004 cs 111

The textread Function

= [a,b,c,...] = textread(filename,format,n)

= filename: a string that is the name of the
file to be read

= format: a string containing the format
primitives (just like in fprintf)

= n: number of lines to read (if not specified,
the file is read until the end)

Spring 2004 cs 111 4

The textread Function

= Example: Assume that you have a file
called phones.txt
VarolAkman Prof 1538
Selim Aksoy AsstProf 3405
Erol Arkun Prof 2249
Cevdet Aykanat Prof 1625
Mehmet Baray Prof 1208
Cengiz Celik Instructor 2613
llyas Cigekli AsstProf 1589
David Davenport AsstProf 1248

Spring 2004 cs 111

The textread Function

= [fname,lname,rank,phone] =
textread('phones.txt’, '%s %s %s %d')
= fname =

cell array double array

Spring 2004 cs 111 6

The textread Function

= The textread function skips the columns
that have an asterisk (*) in the format
descriptor
= [fname, phone] =
textread ('phones.txt’, '%s %*s %*s %d')
= The load command (with ASCII option)

The textread Function

= Example: Searching for telephone
numbers
name = ‘Selim’;
for ii = 1:length(fname),
if (strcmp(fname(ii), name)),
disp(phone(ii));

assumes all of the data is of a single engnd

type but textread is more flexible
Spring 2004 CS 111 7 Spring 2004 CS 111 8
File Processing Opening Files

= File types:
= Binary files
= Data is stored in program readable format
= Processing is fast
= Text (ASCII) files
= Data is stored in human readable format
= Processing is slower

= fid = fopen(filename, permission)
opens the file filename in the mode specified
by permission
fid is the file id (a positive integer) that is assigned
to the file by MATLAB
fid is used for all reading, writing and control
operations on that file

file id 1 is the standard output device and file id 2
is the standard error device

fid will contain -1 if the file could not be opened

Opening Files Opening Files
= Permission can be: = Examples:

= ‘r': open file for reading (default)

= ‘W': open file, or create a new file, for writing;

discard existing contents, if any

‘a’: open file, or create a new file, for writing;

append data to the end of the file

‘r+’: open file for reading and writing

‘w+': open file, or create a new file, for reading

and writing; discard existing contents, if any

= ‘a+’: open file, or create a new file, for reading
and writing; append data to the end of the file

= Add ‘t' to the permission string for a text file

Spring 2004 cs 111 1

= fid = fopen(‘example.dat’, ‘r')
opens a binary file for input

= fid = fopen(‘example.dat’, ‘wt’)
opens a text file for output (if example.dat
already exists, it will be deleted)

=« fid = fopen(‘example.dat’, ‘at’)
opens a text file for output (if example.dat
already exists, new data will be appended
to the end)

Spring 2004 cs 111 12

Closing Files

= status = fclose(fid)
closes the file with file id fid
= If the closing operation is successful,
status will be 0
= If the closing operation is unsuccessful,
status will be -1
= status = fclose(‘all’)
closes all open files (except for standard
output and standard error)

Spring 2004 cs 111 13

Writing Binary Data

= count = fwrite(fid, array, precision)
writes data in array in binary format
= fid: file id of the file opened using fopen
= array: array of values to write
= count: number of values written to the file
= MATLAB writes data in column order (if
array is [1 2;3 4;5 6], data is written as
1,3,5,2,4,6)
= You can use array’ to write in row order

Spring 2004 cs 111 14

Writing Binary Data

= Precision (platform independent) can be:

‘char’: 8-bit characters

‘uchar’: 8-bit unsigned characters
‘intl6’: 16-bit integer

‘int32': 32-bit integer

‘uint16’: 16-bit unsigned integer
‘uint32’: 32-bit unsigned integer
‘float32’: 32-bit floating point

= ‘float64’: 64-bit floating point

Spring 2004 cs 111 15

Reading Binary Data

= [array,count] = fread(fid,size,precision)
reads binary data in a user-specified
format
= size: number of values to read

= n: read exactly n values (array will be a column
vector with length n)

= Inf: read until the end of the file (column vector)

= [n m]: read exactly n x m values (array will be a
n-by-m matrix)

= array: array that contains the data
= count: number of values read from the file

Spring 2004 cs 111 16

Binary 1/0 Examples

% eript file: pinary iom
% Purpbse: To il UStfate the use of binary ifo functions

% Promt for file name
filenane = input (" Enter file nae s)
% Generate the data ar

andn(1, 10

r(count) * values writte)
[
&0 Fe bselri o)

9% Qutput file open failed. Display message.
di sp(msg)

count] = fread(fid,[100 100],"float64');
T3str (count) * values read...'])

the file

ol ose(ti)

9 1nput file open failed. Display message
sp(msg)

Spring 2004 cs 111 17

Binary 1/0 Examples

YRandoni y generate 100 passwords with 8 characters
passwords = [];

for ii -[]1 100, Y%enerate each password
forjj T= 1 8, u/Genera!e each charac!er of each password
t = char(round(("z'-"a")frand + "a’));
s=[st];
end

‘ passwords = strvcat(passwords, s);
enc

%WVite passwords to a binary file passwd. dat
l’/Qnen the file

fid m;g] = fopen('passwd. dat’, "wh');
m (fid <)

error(nsg);

%N\te the passwords

count = fwite(fid, passwords, 'char');

fA&rlntf(‘%1 charc\clers were witten\n', count);
ose the file

status = fcl ose(f|d)

if (statu
error((/Ju\d ot close the file')

end

Spring 2004 cs 111 18

Binary 1/0 Examples

%ead the passwords fromthe binary file passwd. dat
O/L%Jenlheflle
id msg = fopen('passwd.dat', 'rb');
\f (fid<1),
error(n'sg)
end
%ead the passwords
[passwords2, count] = fread(fid, [100 8], 'char’
fprintf("%l characters vere read\ n’ , count)
% ose the file
status —fclose(ofld)

if (status ~=
error('Could not close the file');
end
Spring 2004 CS 111 19

)

Writing Formatted Text Data

= count = fprintf(fid,format,vall,val2,...)
writes formatted text data in a user-
specified format
= fid: file id (if fid is missing, data is written
to the standard output device (command
window)

= format: same as what we have been using
(combination of format specifiers that start

with %)
= count: number of characters written
Spring 2004 CS 111 20

Writing Formatted Text Data

= Make sure there is a one-to-one
correspondence between format specifiers
and types of data in variables

= Format strings are scanned from left to right

= Program goes back to the beginning of the
format string if there are still values to write
(format string is recycled)

= If you want to print the actual % character,
you can use %% in the format string

Spring 2004 cs 111 21

Reading Formatted Text Data

= [array,count] = fscanf(fid,format,size)
reads formatted text data in a user-
specified format
= fid: file id
= format: same as format in fprintf
= Size: same as size in fread
= array: array that receives the data
= count: number of elements read

Spring 2004 cs 111 22

Reading Formatted Text Data

= line = fgetl(fid)
reads the next line excluding the end-
of-line characters from a file as a
character string
= line: character array that receives the data

= line is set to -1 if fgetlencounters the end
of a file

Spring 2004 cs 111 23

Reading Formatted Text Data

= line = fgets(fid)
reads the next line including the end-of-
line characters from a file as a character
string
= line: character array that receives the data

= line is set to -1 if fgets encounters the end
of a file

Spring 2004 cs 111 24

Formatted Text I/0 Examples

% Script file: table.m
% Purpose: To create a table of square roots, squares, and cubes.

% Cpen the file.
fid = fopen(’ table. dat’, "wi');

%Print the title of the table
fprintf(fid, ' Table of Square Roots, Squares, and Cubes\n\n');

% Print col um headi ngs

fprintf(fid, ' Nunber Squa Square Cube\n")
fprintf(fid ' ====== ==== S===== ====\n
%Gener%e the required data
square_root = sqgrt(ii);
square”= i "2;
cube = ii."3;
%Oeate the output array
i Salar 8 odt Mquare cube'];
%an the data
fprl mf (f\ d, ' @d %d1. af %d od\n',out(ii,:));
% d ose |
status = (close(l\d)
Spring 2004 cs 111 25

Formatted Text I/0 Examples

%Jpdat es the phone number of a person

%Get the name and new ﬁhone nunber

name = input('Enter the |ast nane of the person: ', 's');
new_phone = input('Enter the new phone number: ');

%ead the phone nunbers

[fname, | nane, rank, phone] = textread('phones.txt', '% % % %l

%-i nd the person and update the phone nunber
for i =1:1ength(lnane),
i1 (strenp(I name(i), name)),
phone(i) = new phone:
end
end

%Nlle the upda(ed phone nunbers
fid = fopen(phones2.txt', "w'

for i =1: Ien?lh(fname
"% Y8 Us %wi\n', fname{i}, Iname{i}, rank{i},

en
fclose(fid),

Spring 2004 cs 111 26

Formatted Text I/0 Examples

%Jpdat es the name of a person

%t the old and new names
old_nane = input('"Enter the old nane: ', 's');
new_nane = input('Enter the new nane: ', 's');
/Qsen lhe |npul file

idl = fopen('phones.txt', 'rt');
“/Qaen “the outpu file

fid2 = fopen('phones3.txt', "wt');

%Read |ines one by one

||ne—fgels(f\dl)

while (I'ine > 0),
YRepl ace the ol d name with the new name
line2 = strrep(line, old_name, new_ nane);
Wite to the new file
fprintf(fid2, '%', line2);
9Read the next |ine
line = fgets(fidl);

end

9% ose the file

status = fclose("all');

Spring 2004 cs 111 27

The exist Function

= ident = exist(‘item’, ‘kind’)
checks the existing of ‘item’
= item: name of the item to search for

= kind: optional value for restricting the
search for a specific kind of item (possible
values are ‘var’, ‘file’, ‘builtin’, ‘dir")

= ident: a value based on the type of the
item

Spring 2004 cs 111 28

The exist Function

= Values returned by exist can be:
= 0: item not found

= 1: item is a variable in the current
workspace

= 2: item is an m-file or a file of unknown
type

= 5 item is a built-in function

= 7: item is a directory

Spring 2004 cs 111 29

Examples

= exist('‘phones.txt')

ans =
2
= exist('phones5.txt')
ans =
0
= clear
= X=5;
= exist('x")
ans =
1
= exist('y')
ans =

= exist('sum')
ans =
5

Spring 2004 cs 111 30

