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MATLAB
n MATLAB Basics
n Top-down Program Design, Relational and 

Logical Operators
n Branches and Loops
n Vectors and Plotting
n User-defined Functions
n Additional Data Types: 2-D Arrays, Logical 

Arrays, Strings
n Input/Output Functions
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MATLAB Basics: Variables

n Initialization using shortcut statements
n colon operator → first:increment:last

n x = 1:2:10
x =

1     3     5     7     9
n y = 0:0.1:0.5

y =
0    0.1    0.2    0.3    0.4    0.5
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MATLAB Basics: Variables

n Initialization using keyboard input
n input()

n value = input( 'Enter an input value: ' )
Enter an input value: 1.25
value =

1.2500
n name = input( 'What is your name: ', 's' )

What is your name: Selim
name =
Selim
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MATLAB Basics: Subarrays

n Array indices start from 1
n x = [ -2 0 9 1 4 ];

n x(2)
ans =

0
n x(4)

ans =
1

n x(8)
??? Error

n x(-1)
??? Error
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MATLAB Basics: Subarrays
n y = [ 1 2 3; 4 5 6 ];

n y(1,:)
ans =

1     2     3
n y(:,2)

ans =
2
5

n y(2,1:2)
ans =

4     5

n y(1,2:end)
ans =

2     3
n y(:,2:end)

ans =
2     3
5     6
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MATLAB Basics: Subarrays
n y = [ 1 2 3; 4 5 6 ];

n y(1,2) = -5
y =

1    -5     3
4     5     6

n y(2,1) = 0
y =

1    -5     3
0     5     6

n y(1,2:end) = [ -1 9 ]
y =

1    -1     9
0     5     6

n y = [ 1 2 3; 4 5 6; 7 8 9 ];
n y(2:end,2:end) = 0

y =
1     2     3
4     0     0
7     0     0

n y(2:end,2:end) = [ -1 5 ]
??? Error

n y(2,[1 3]) = -2
y =

1     2     3
-2     0    -2
7     0     0
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MATLAB Basics: Displaying Data
n The disp( array ) function

n disp( 'Hello' );
Hello

n disp(5);
5

n disp( [ 'Bilkent ' 'University' ] );
Bilkent University

n name = 'Selim'; disp( [ 'Hello ' name ] );
Hello Selim
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MATLAB Basics: Displaying Data
n The fprintf( format, data ) function

n %d integer
n %f floating point format
n %e exponential format
n \n new line character
n \t tab character

n Examples:
n fprintf( 'Result is %d', 3 );

Result is 3
n fprintf( 'Area of a circle with radius %d is %f', 3, pi*3^2 );

Area of a circle with radius 3 is 28.274334
n x = pi;
n fprintf( 'x = %0.2f', x );

x = 3.14
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Programming Rules of Thumb
n Learn program patterns of general utility 

(branching, loops, etc.) and use relevant 
patterns for the problem at hand

n Seek inspiration by systematically working test 
data by hand and ask yourself: “what am I 
doing?”

n Declare variables for each piece of information 
you maintain when working problem by hand

n Decompose problem into manageable tasks
n Remember the problem’s boundary conditions
n Validate your program by tracing it on test 

data with known output
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Relational Operators
n Relational operators are used to 

represent conditions where the result of 
the condition is either true or false

n In MATLAB, false is represented by 0 
and true is represented by 1 (non-zero)

n Don’t confuse equivalance (==) with 
assignment (=)

n Be careful about roundoff errors during 
numeric comparisons (you can 
represent “x == y” as “abs(x-y) < eps”)
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Logical Operators

001111

011001

111010

100000

~axor(a,b)a | ba & bba
notxororandinput
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Operator Hierarchy
n Processing order of operations:

n parenthesis (starting from the innermost)
n ~ operators
n exponentials (left to right)
n multiplications and divisions (left to right)
n additions and subtractions (left to right)
n relational operators (left to right)
n & operators (left to right)
n | operators (left to right)
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Branches

n Branches are used to select and 
execute specific sections of the code 
while skipping other sections

n Selection of different sections depend 
on a condition statement

n We learned:
n if statement
n switch statement
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Branches: “if” Statement
n Conditions can be:

n any real value (0 is false, non-zero is true)
n combination of relational and logical 

operators
n e.g. ( x > 0 ) & ( x < 10 )

n logical functions
n isempty()
n isnumeric(), ischar()
n isinf(), isnan()
n exist()
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Branches: “if-elseif-else” Statement
if ( condition 1 ),

statement 1
statement 2
...

elseif ( condition 2 ),
statement 1
statement 2
...

else
statement 1
statement 2
...

end

statement
group 1

condition
1

statement
group 1

true false

condition
2

statement
group 2

statement
group 3

true false
statement
group 2

statement
group 3
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Branches: “switch” Statement
switch ( expression ),
case {value set 1},

statement 1
statement 2
...

case {value set 2},
statement 1
statement 2
...

...
otherwise,

statement 1
statement 2
...

end

statement
group 1

statement
group 2

optional statement group that is 
executed if none of the cases is satisfied
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Loops

n Loops are used to execute a sequence 
of statements more than once

n We learned:
n while loop
n for loop

n They differ in how the repetition is 
controlled
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Loops: “while” Loop
n Statements are 

executed indefinitely 
as long as the 
condition is satisfied

while ( condition ),
statement 1
statement 2
...

end

statement
group

condition

statement
group

true

false

Spring 2004 CS 111 20

Loops: “for” Loop
n Statements are executed a specified number 

of times

for index = expression,
statement 1
statement 2
...

end

n Expression is usually a vector in shortcut 
notation first:increment:last

statement
group
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Loops: “break/continue” Statements

n Break statement terminates the 
execution of a loop and passes the 
control to the next statement after the 
end of the loop

n Continue statement terminates the 
current pass through the loop and 
returns control to the top of the loop
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Advice
n Use indentation to improve the readability of 

your code
n Never modify the value of a loop index inside 

the loop
n Allocate all arrays used in a loop before 

executing the loop
n If it is possible to implement a calculation 

either with a loop or using vectors, always 
use vectors

n Use built -in MATLAB functions as much as 
possible instead of reimplementing them
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Initializing Vectors
n linspace(x1,x2) generates a row vector 

of 100 linearly equally spaced points 
between x1 and x2

n linspace(x1,x2,N) generates N points 
between x1 and x2
n x = linspace(10,20,5)

x =
10.00   12.50   15.00   17.50   20.00

n logspace(x1,x2) can be used for 
logarithmically equally spaced points
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Vector Input to Functions

n You can call built-in functions with array 
inputs

n The function is applied to all elements 
of the array

n The result is an array with the same 
size as the input array
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Vector Operations
n Vector-vector operations

(element-by-element operations)
n x = [ 1 2 3 4 5 ];     y = [ 2 -1 4 3 -2 ];
n z = x + y

z =
3     1     7     7     3

n z = x .* y
z =

2    -2    12    12   -10
n z = x ./ y

z =
0.5000   -2.0000    0.7500    1.3333   -2.5000
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Vector Operations

n Vector-vector operations
(element-by-element operations)
n z = x .^ y
n z =

1.00    0.50   81.00   64.00    0.04

n Use .*, ./, .^ for element-by-element 
operations

n Vector dimensions must be the same
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Plotting Summary
n plot(x,y)

linear plot of vector y vs. vector x
n title('text'), xlabel('text'), ylabel('text')

labels the figure, x-axis and y-axis
n axis( [ xmin xmax ymin ymax ] )

sets axes’ limits
n legend( 'string1', 'string2', 'string3', ... )

adds a legend using the specified strings
n hold on/off

allows/disallows adding subsequent graphs to 
the current graph
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Scripts

n A script is just a collection of MATLAB 
statements

n Running a script is the same as running 
the statements in the command window

n Scripts and the command window share 
the same set of variables, also called 
global variables
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Functions
n A function is a black box that gets some input 

and produces some output
n We do not care about the inner workings of a 

function
n Functions provide reusable code
n Functions simplify debugging
n Functions have private workspaces

n The only variables in the calling program that can 
be seen by the function are those in the input list

n The only variables in the function that can be seen 
by the calling program are those in the output list
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Function Examples
function [ cnt, pos ] = strsearch( s, c )
%STRSEARCH find the number of occurrences of a character in a string
%   Function STRSEARCH finds the number of occurrences of a character
%   c in a given string s. It returns both the index of the first
%   occurrence and the number of occurrences.
%   It returns 0 for both the index and the number of occurrences if
%   c does not exists in s.
%
%   By Pinar Senkul, 24/10/2003

pos = 0;
cnt = 0;

n = length(s);
for ii = n:-1:1,

if ( s(ii) == c ),
cnt = cnt + 1;
pos = ii;

end
end

two variables declared 
as output arguments

two variables declared 
as input arguments

other comment lines

executable code

H1 comment line
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2-D Arrays

n Adding the elements of a matrix
function s = sum_elements(a)

[r,c] = size(a);
s = 0;
for ii = 1:r,

for jj = 1:c,
s = s + a(ii,jj);

end
end
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Logical Arrays
n Created by relational and logical 

operators
n Can be used as masks for arithmetic 

operations
n A mask is an array that selects the 

elements of another array so that the 
operation is applied to the selected 
elements but not to the remaining 
elements
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Logical Arrays
n Examples

n b = [ 1 2 3; 4 5 6; 7 8 9 ]
b =

1     2     3
4     5     6
7     8     9

n c = b > 5
c =

0     0     0
0     0     1
1     1     1

n whos
Name      Size           Bytes  Class

a             2x4               64  double array
b             3x3               72  double array
c             3x3               72  double array (logical)
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Strings

n A string is an array of characters
n s = 'abc'

is equivalent to s = [ 'a' 'b' 'c' ]

n All operations that apply to vectors and 
arrays can be used together with 
strings as well
n s(1) → 'a'
n s( [ 1 2 ] ) = 'XX' → s = 'XXc'
n s(end) → 'c'
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Character Arrays

n 2-D character arrays
n s = [ 'my first string'; 'my second string' ]

??? Error
n s = char( 'my first string', 'my second string' )

s =
my first string 
my second string

n size(s) → [ 2 16 ]
n size( deblank( s(1,:) ) ) → [ 1 15 ]

char function 
automatically 
pads strings
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String Functions
n ischar(), isletter(), isspace()
n strcmp() : returns 1 if two strings are identical
n upper(): Lowercase-to-uppercase
n lower() : Uppercase-to-lowercase
n findstr() : finds one string within another one
n strtok() : finds a token in a string
n strrep() : replaces one string with another
n num2str(), str2num()
n sprintf() is identical to fprintf() but output is a 

string


