
1

MATLAB Review

Selim Aksoy
Bilkent University

Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Spring 2004 CS 111 2

MATLAB
n MATLAB Basics
n Top-down Program Design, Relational and

Logical Operators
n Branches and Loops
n Vectors and Plotting
n User-defined Functions
n Additional Data Types: 2-D Arrays, Logical

Arrays, Strings
n Input/Output Functions

Spring 2004 CS 111 3

MATLAB Basics: Variables

n Initialization using shortcut statements
n colon operator → first:increment:last

n x = 1:2:10
x =

1 3 5 7 9
n y = 0:0.1:0.5

y =
0 0.1 0.2 0.3 0.4 0.5

Spring 2004 CS 111 4

MATLAB Basics: Variables

n Initialization using keyboard input
n input()

n value = input('Enter an input value: ')
Enter an input value: 1.25
value =

1.2500
n name = input('What is your name: ', 's')

What is your name: Selim
name =
Selim

Spring 2004 CS 111 5

MATLAB Basics: Subarrays

n Array indices start from 1
n x = [-2 0 9 1 4];

n x(2)
ans =

0
n x(4)

ans =
1

n x(8)
??? Error

n x(-1)
??? Error

Spring 2004 CS 111 6

MATLAB Basics: Subarrays
n y = [1 2 3; 4 5 6];

n y(1,:)
ans =

1 2 3
n y(:,2)

ans =
2
5

n y(2,1:2)
ans =

4 5

n y(1,2:end)
ans =

2 3
n y(:,2:end)

ans =
2 3
5 6

2

Spring 2004 CS 111 7

MATLAB Basics: Subarrays
n y = [1 2 3; 4 5 6];

n y(1,2) = -5
y =

1 -5 3
4 5 6

n y(2,1) = 0
y =

1 -5 3
0 5 6

n y(1,2:end) = [-1 9]
y =

1 -1 9
0 5 6

n y = [1 2 3; 4 5 6; 7 8 9];
n y(2:end,2:end) = 0

y =
1 2 3
4 0 0
7 0 0

n y(2:end,2:end) = [-1 5]
??? Error

n y(2,[1 3]) = -2
y =

1 2 3
-2 0 -2
7 0 0

Spring 2004 CS 111 8

MATLAB Basics: Displaying Data
n The disp(array) function

n disp('Hello');
Hello

n disp(5);
5

n disp(['Bilkent ' 'University']);
Bilkent University

n name = 'Selim'; disp(['Hello ' name]);
Hello Selim

Spring 2004 CS 111 9

MATLAB Basics: Displaying Data
n The fprintf(format, data) function

n %d integer
n %f floating point format
n %e exponential format
n \n new line character
n \t tab character

n Examples:
n fprintf('Result is %d', 3);

Result is 3
n fprintf('Area of a circle with radius %d is %f', 3, pi*3^2);

Area of a circle with radius 3 is 28.274334
n x = pi;
n fprintf('x = %0.2f', x);

x = 3.14

Spring 2004 CS 111 10

Programming Rules of Thumb
n Learn program patterns of general utility

(branching, loops, etc.) and use relevant
patterns for the problem at hand

n Seek inspiration by systematically working test
data by hand and ask yourself: “what am I
doing?”

n Declare variables for each piece of information
you maintain when working problem by hand

n Decompose problem into manageable tasks
n Remember the problem’s boundary conditions
n Validate your program by tracing it on test

data with known output

Spring 2004 CS 111 11

Relational Operators
n Relational operators are used to

represent conditions where the result of
the condition is either true or false

n In MATLAB, false is represented by 0
and true is represented by 1 (non-zero)

n Don’t confuse equivalance (==) with
assignment (=)

n Be careful about roundoff errors during
numeric comparisons (you can
represent “x == y” as “abs(x-y) < eps”)

Spring 2004 CS 111 12

Logical Operators

001111

011001

111010

100000

~axor(a,b)a | ba & bba
notxororandinput

3

Spring 2004 CS 111 13

Operator Hierarchy
n Processing order of operations:

n parenthesis (starting from the innermost)
n ~ operators
n exponentials (left to right)
n multiplications and divisions (left to right)
n additions and subtractions (left to right)
n relational operators (left to right)
n & operators (left to right)
n | operators (left to right)

Spring 2004 CS 111 14

Branches

n Branches are used to select and
execute specific sections of the code
while skipping other sections

n Selection of different sections depend
on a condition statement

n We learned:
n if statement
n switch statement

Spring 2004 CS 111 15

Branches: “if” Statement
n Conditions can be:

n any real value (0 is false, non-zero is true)
n combination of relational and logical

operators
n e.g. (x > 0) & (x < 10)

n logical functions
n isempty()
n isnumeric(), ischar()
n isinf(), isnan()
n exist()

Spring 2004 CS 111 16

Branches: “if-elseif-else” Statement
if (condition 1),

statement 1
statement 2
...

elseif (condition 2),
statement 1
statement 2
...

else
statement 1
statement 2
...

end

statement
group 1

condition
1

statement
group 1

true false

condition
2

statement
group 2

statement
group 3

true false
statement
group 2

statement
group 3

Spring 2004 CS 111 17

Branches: “switch” Statement
switch (expression),
case {value set 1},

statement 1
statement 2
...

case {value set 2},
statement 1
statement 2
...

...
otherwise,

statement 1
statement 2
...

end

statement
group 1

statement
group 2

optional statement group that is
executed if none of the cases is satisfied

Spring 2004 CS 111 18

Loops

n Loops are used to execute a sequence
of statements more than once

n We learned:
n while loop
n for loop

n They differ in how the repetition is
controlled

4

Spring 2004 CS 111 19

Loops: “while” Loop
n Statements are

executed indefinitely
as long as the
condition is satisfied

while (condition),
statement 1
statement 2
...

end

statement
group

condition

statement
group

true

false

Spring 2004 CS 111 20

Loops: “for” Loop
n Statements are executed a specified number

of times

for index = expression,
statement 1
statement 2
...

end

n Expression is usually a vector in shortcut
notation first:increment:last

statement
group

Spring 2004 CS 111 21

Loops: “break/continue” Statements

n Break statement terminates the
execution of a loop and passes the
control to the next statement after the
end of the loop

n Continue statement terminates the
current pass through the loop and
returns control to the top of the loop

Spring 2004 CS 111 22

Advice
n Use indentation to improve the readability of

your code
n Never modify the value of a loop index inside

the loop
n Allocate all arrays used in a loop before

executing the loop
n If it is possible to implement a calculation

either with a loop or using vectors, always
use vectors

n Use built -in MATLAB functions as much as
possible instead of reimplementing them

Spring 2004 CS 111 23

Initializing Vectors
n linspace(x1,x2) generates a row vector

of 100 linearly equally spaced points
between x1 and x2

n linspace(x1,x2,N) generates N points
between x1 and x2
n x = linspace(10,20,5)

x =
10.00 12.50 15.00 17.50 20.00

n logspace(x1,x2) can be used for
logarithmically equally spaced points

Spring 2004 CS 111 24

Vector Input to Functions

n You can call built-in functions with array
inputs

n The function is applied to all elements
of the array

n The result is an array with the same
size as the input array

5

Spring 2004 CS 111 25

Vector Operations
n Vector-vector operations

(element-by-element operations)
n x = [1 2 3 4 5]; y = [2 -1 4 3 -2];
n z = x + y

z =
3 1 7 7 3

n z = x .* y
z =

2 -2 12 12 -10
n z = x ./ y

z =
0.5000 -2.0000 0.7500 1.3333 -2.5000

Spring 2004 CS 111 26

Vector Operations

n Vector-vector operations
(element-by-element operations)
n z = x .^ y
n z =

1.00 0.50 81.00 64.00 0.04

n Use .*, ./, .^ for element-by-element
operations

n Vector dimensions must be the same

Spring 2004 CS 111 27

Plotting Summary
n plot(x,y)

linear plot of vector y vs. vector x
n title('text'), xlabel('text'), ylabel('text')

labels the figure, x-axis and y-axis
n axis([xmin xmax ymin ymax])

sets axes’ limits
n legend('string1', 'string2', 'string3', ...)

adds a legend using the specified strings
n hold on/off

allows/disallows adding subsequent graphs to
the current graph

Spring 2004 CS 111 28

Scripts

n A script is just a collection of MATLAB
statements

n Running a script is the same as running
the statements in the command window

n Scripts and the command window share
the same set of variables, also called
global variables

Spring 2004 CS 111 29

Functions
n A function is a black box that gets some input

and produces some output
n We do not care about the inner workings of a

function
n Functions provide reusable code
n Functions simplify debugging
n Functions have private workspaces

n The only variables in the calling program that can
be seen by the function are those in the input list

n The only variables in the function that can be seen
by the calling program are those in the output list

Spring 2004 CS 111 30

Function Examples
function [cnt, pos] = strsearch(s, c)
%STRSEARCH find the number of occurrences of a character in a string
% Function STRSEARCH finds the number of occurrences of a character
% c in a given string s. It returns both the index of the first
% occurrence and the number of occurrences.
% It returns 0 for both the index and the number of occurrences if
% c does not exists in s.
%
% By Pinar Senkul, 24/10/2003

pos = 0;
cnt = 0;

n = length(s);
for ii = n:-1:1,

if (s(ii) == c),
cnt = cnt + 1;
pos = ii;

end
end

two variables declared
as output arguments

two variables declared
as input arguments

other comment lines

executable code

H1 comment line

6

Spring 2004 CS 111 31

2-D Arrays

n Adding the elements of a matrix
function s = sum_elements(a)

[r,c] = size(a);
s = 0;
for ii = 1:r,

for jj = 1:c,
s = s + a(ii,jj);

end
end

Spring 2004 CS 111 32

Logical Arrays
n Created by relational and logical

operators
n Can be used as masks for arithmetic

operations
n A mask is an array that selects the

elements of another array so that the
operation is applied to the selected
elements but not to the remaining
elements

Spring 2004 CS 111 33

Logical Arrays
n Examples

n b = [1 2 3; 4 5 6; 7 8 9]
b =

1 2 3
4 5 6
7 8 9

n c = b > 5
c =

0 0 0
0 0 1
1 1 1

n whos
Name Size Bytes Class

a 2x4 64 double array
b 3x3 72 double array
c 3x3 72 double array (logical)

Spring 2004 CS 111 34

Strings

n A string is an array of characters
n s = 'abc'

is equivalent to s = ['a' 'b' 'c']

n All operations that apply to vectors and
arrays can be used together with
strings as well
n s(1) → 'a'
n s([1 2]) = 'XX' → s = 'XXc'
n s(end) → 'c'

Spring 2004 CS 111 35

Character Arrays

n 2-D character arrays
n s = ['my first string'; 'my second string']

??? Error
n s = char('my first string', 'my second string')

s =
my first string
my second string

n size(s) → [2 16]
n size(deblank(s(1,:))) → [1 15]

char function
automatically
pads strings

Spring 2004 CS 111 36

String Functions
n ischar(), isletter(), isspace()
n strcmp() : returns 1 if two strings are identical
n upper(): Lowercase-to-uppercase
n lower() : Uppercase-to-lowercase
n findstr() : finds one string within another one
n strtok() : finds a token in a string
n strrep() : replaces one string with another
n num2str(), str2num()
n sprintf() is identical to fprintf() but output is a

string

