Writing Classes in Java

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Writing Classes

= We've been using predefined classes. Now we
will learn to write our own classes to define
objects
= Chapter 4 focuses on:
= class definitions
= encapsulation and Java modifiers
= method declaration, invocation, and parameter
passing
= method overloading
= method decomposition

Summer 2004 Cs111 2

Objects

= An object has:
= state - descriptive characteristics
. beha)viors - what it can do (or what can be done

to it

= For example, consider a coin that can be
flipped so that it's face shows either "heads"
or "tails"

= The state of the coin is its current face
(heads or tails)

= The behavior of the coin is that it can be
flipped

= Note that the behavior of the coin might
change its state

Summer 2004 Cs111 3

Classes

= Aclass is a blueprint of an object

= It is the model or pattern from which objects
are created

= For example, the Stri ng class is used to
define St ri ng objects

= Each Stri ng object contains specific
characters (its state)

= Each Stri ng object can perform services
(behaviors) such as t oUpper Case

Summer 2004 Cs111 4

Classes

= The Stri ng class was provided for us
by the Java standard class library

= But we can also write our own classes
that define specific objects that we
need

= For example, suppose we want to write
a program that simulates the flipping of
a coin

= We can write a Coi n class to represent
a coin object

Summer 2004 Cs111 5

Classes

= A class contains data declarations and
method declarations

Data declarations

Method declarations

Summer 2004 Cs111 6

The Coin Class

= In our Coi n class we could define the
following data:
= face, an integer that represents the current face
= HEADS and TAI LS, integer constants that
represent the two possible states
= We might also define the following methods:
= a Coi n constructor, to initialize the object
= aflip method, to flip the coin
= ai sHeads method, to determine if the current
face is heads
= atoString method, to return a string
description for printing

Summer 2004 Cs111 7

Example

import java.util . Random

face = (int) (Math.randon()

String faceName;
face == HEADS)
acetame = Fehds

faceName = "Tai |s
return faceNa

}
)Summer 2004 Cs111 8

Example

public class CountFlips
{

.
/1" Flips a coin multiple tines and counts the number of heads
/1 and tails that result.

final int NUMFLIPS = 1000;

int heads = 0, tails = 0;

Coin nyCoin = new Coin(); // instantiate the Coin object

for (int count=1; count <= NUM FLIPS; count++)
nyCoin.flip();

hi
else
tails++

if (nmyCoin.isHeads())
eads++;

Systemout.println ("The number flips: " + NUMFLIPS);
Systemout.printin ("The number of heads: " + heads);
Systemout.printin ("The number of tails: " + tails):
}
}
Summer 2004 Cs 111 9

The Coin Class

= Note that the Count Fl i ps program
did not use the t oSt ri ng method

= A program will not necessarily use
every service provided by an object

= Once the Coi n class has been defined,
we can use it again in other programs
as needed

Summer 2004 Cs111 10

Data Scope

= The scope of data is the area in a
program in which that data can be used
(referenced)

= Data declared at the class level can be
used by all methods in that class

= Data declared within a method can be
used only in that method

= Data declared within a method is called
local data

Summer 2004 Cs111 11

Instance Data

= The f ace variable in the Coi n class is called
instance databecause each instance (object)
of the Coi n class has its own

= A class declares the type of the data, but it
does not reserve any memory space for it

= Every time a Coi n object is created, a new
f ace variable is created as well

= The objects of a class share the method
definitions, but each has its own data space

= That is the only way two objects can have
different states

Summer 2004 Cs111 12

Example

Instance Data

public cl as
{

nal int GOAL = 3
ihi“count 1=

I/ Create two separale coin objects
Goin coinl = new Coin():
Goi n coin2 = new Coi n()
i1e (countl < GOAL && count2 < GOAL)

coing.flip();
Corn2;iiip):
/1 Print the flip results (uses Coin's toString method)
Systemout.print ("Coin 1 " + c

Stem oul

Count 2 = (coi n2. i sheads()) » coumi2el | O:

Deter i ne the wi nner
(Count1'< GOALY
Systemout. printin (“Coin 2 Wnsi®);

f (count2 < GOAL)
ystem out priftin (“Coin 1 Wns!")
s
Systemout.printin (“11's a TIE");
}
}

Summer 2004 Cs111 13

class Coin coinl
tace [0]
coi n2
face
Summer 2004 Cs111 14

UML Diagrams

UML Class Diagrams

= UML stands for the Unified Modeling
Language

= UML diagrams show relationships
among classes and objects

= A UML class diagram consists of one or
more classes, each with sections for the
class name, attributes, and methods

= Lines between classes represent
associations

= Associations can show multiplicity

Summer 2004 Cs111 15

= A UML class diagram for the Fl i pRace
program:

FlipRace Coin

face : int

main (args : String[]) :
void flip() : void

isHeads() : boolean
toString() : String

Summer 2004 Cs111 16

UML Diagrams

Encapsulation

= A UML object diagram consists of one
or more instantiated objects.

= It is a snapshot of the objects during an
executing program, showing data
values

Summer 2004 Cs111 17

= We can take one of two views of an object:
= internal - the variables the object holds and the
methods that make the object useful
= external - the services that an object provides
and how the object interacts
= From the external view, an object is an
encapsulated entity, providing a set of
specific services
= These services define the interface to the
object
= Recall from Chapter 2 that an object is an
abstraction, hiding details from the rest of the
system

Summer 2004 Cs111 18

Encapsulation

= An object should be self-governing

= Any changes to the object's state (its
variables) should be made only by that
object's methods

= We should make it difficult, if not impossible,
to access an object’s variables other than via
its methods

= The user, or client, of an object can request
its services, but it should not have to be
aware of how those services are
accomplished

Summer 2004 Cs111 19

Encapsulation

= An encapsulated object can be thought
of as a black box

= Its inner workings are hidden to the
client, which invokes only the interface
methods

Client HEEE)p o Mehods

Data

Summer 2004 Cs111 20

Visibility Modifiers

= In Java, we accomplish encapsulation
through the appropriate use of visibility
modifiers

= A modifier is a Java reserved word that
specifies particular characteristics of a
method or data value

= We have used the modifier f i nal to define a
constant

= Java has three visibility modifiers: publ i c,
protected, and private

= The pr ot ect ed modifier involves
inheritance, which we will discuss in CS 112

Summer 2004 Cs111 21

Visibility Modifiers

= Members of a class that are declared with

public visibility can be accessed from

anywhere

Public variables violate encapsulation

= Members of a class that are declared with
private visibility can only be accessed from
inside the class

= Members declared without a visibility modifier
have default visibility and can be accessed by
any class in the same package

= Java modifiers are discussed in detail in
Appendix F

Summer 2004 Cs111 22

Visibility Modifiers

= Methods that provide the object's services are
usually declared with public visibility so that
they can be invoked by clients

= Public methods are also called service
methods

= A method created simply to assist a service
method is called a support method

= Since a support method is not intended to be
called by a client, it should not be declared
with public visibility

Summer 2004 Cs111 23

Visibility Modifiers

public private

Enforce

Variables .
encapsulation

Support other
Methods methods in the

Provide services

to clients
class

Summer 2004 Cs111 24

Driver Programs

= A driver program drives the use of
other, more interesting parts of a
program

= Driver programs are often used to test
other parts of the software

= The Banki ng class contains a mai n
method that drives the use of the
Account class, exercising its services

Example

import java.text. Nunber For mat ;

Account

Nunber Formmt frt =
t6 final double RATE =
or ong acct Nunber
private doubl e bal ance;

ori val e

£ For o get Qurrency nst ancef
O T i Rferest “rate"of

/-

1 up,the-account by def i ng 115 owner account nunber

A

m}\",'Aicbu}n'('sm}.g'a;m'er' Tong account, doubie initia)
nane = own

er
acct Nunber = account ;
bafance = inifral:

/1" Validages the transaction, then deposits the specified amount
77 Vo the account - Returns’ the new bal ance.

publ i ¢ doubl e deposit (doubl e amount)
| (amount < 0) [/ deposit value is negative
Systemout. printin (

Systemout . printin (“Error: Deposit amount is
S/stem aut. printin (acci umber + T o et (amount))

bal ance = bal ance + amount

return bal ance;
)

Summer 2004 cs111 25 Summer 2004 cs111 26
Il et b b T T el T the account and returns the new bal ance.
/1 Validates the transaction, then withdraws the specified amunt jf..Adds interest to the account and returns the new balance.
J/__fromthe account. Returns'the new bal ance publ i c doubl e addinterest ()
publ i c doubl e i thdraw (doubl e anount, doubl e fee) bal ance += (bal ance * RATE);

return balance;
amount += fee;)
it (amount < 0) // withdraw value is negative e
{ /] Returns the current balance of the account
Systemout.printin (); jj .. rerurns the current balance o M AceouN. .
Systemout.printin (“Error: Wthdre m\rum isinvalid."); publ i c doubl e get Bal ance ()
System out . printin (*Account: * Nurtber 1
StEm o PRt R (RG0S e T 2OPRRMTET It (amount)) ¢ return bal ance:
}) 3
el se
f (amount > balance) // withdraw value exceeds bal ance /-
{
Systemout.printin (); H
stemout.println ("Error \H“Uf \mrn f un, H blic |
/stem out Brintin ¢+ Accol ctNumber); guettetong get Account urtber ()
Syatem out brintin (*Roquested: © 3 fm-] ormat (amount)) : return acct Number ;
, Systemout.printin (“Availabie: * + ft. format (bal ance));)
el se -
bal ance = bal ance - anount; 1
1
return balance; pu
) i
return (acctNumber + “\t* + name + “\t* + fnt.fornat(balance));
}
}
Summer 2004 cs111 27 Summer 2004 cs111 28

Example

public class Banking
{

/-
7
/-
oubl i c static void main (String[] args)

Account acctl =
Account acct 2
Account acct3 =

"Ted Murphy’, 72354, 102 gc)
"Jane Smth", 69713, 40.00
(" Edwar d Dem;ey”. 93757, 759.32) ;

acct 1. deposit (25 8'3)
doubl e snithBal ance = acct2. deposit (500.00);

Systemout.printIn ("Snith bal ance after deposit: " +
sm I ance) ;
Systemout.printin ("Smith balance after withdrawal: " +

t2. W!lhdraw(d’éo 75, 1.50));
acct3.withdraw (800.00, 0.0); // exceeds bal ance
acct 1. addI nterest();
acct 2. addInterest();
acct 3. addl nt er est

Systemout.println();
Systemout. println (acctl)
Systemout. println (acct2
System out . println (acct 3
}
}
Summer 2004 Cs 111

29

Method Declarations

= A method declaration specifies the code that
will be executed when the method is invoked
(or called)

= When a method is invoked, the flow of
control jumps to the method and executes its
code

= When complete, the flow returns to the place
where the method was called and continues

= The invocation may or may not return a
value, depending on how the method is
defined

Summer 2004 Cs111 30

Method Control Flow

= The called method can be within the same class,
in which case only the method name is needed

conmput e ny Met hod

myMet hod() ;

Summer 2004 Cs111 31

Method Control Flow

The called method can be part of
another class or object

4 N
mai n dol t hel pMe
obj . dol t(); hel pMe(): T
—__
Summer 2004 cs111 32

Method Header

= A method declaration begins with a
method header

char calc (int nunl, int nun2, String nessage)

Method Body

= The method header is followed by the
method body

char calc (int nunl, int nun2, String nessage)

{

— _/ i - .
| ~— int sum= nunl + nung;
method . char result = nmessage.charAt (sum;
parameter list
name
return result; sumand resul t
. = ! are local data
return The parameter list specifies the type }
type and name of each parameter They are created
. . each time the
The name of a parameter in the method The return expression must be method is called, and
declaration is called a formal argument consistent with the return type are destroyed when
it finishes executing
Summer 2004 cs 111 33 Summer 2004 cs 111 34

= The return type of a method indicates the
type of value that the method sends back to
the calling location

= A method that does not return a value has a
voi d return type

= A return statement specifies the value that
will be returned

return expression;

= Its expression must conform to the return

type

Summer 2004 Cs111 35

= Each time a method is called, the actual
parameters in the invocation are copied into
the formal parameters
ch = obj.calc (25, count, "Hello");

— |

char calc (int numl, int nunR, String nessage)

int sum= nunl + nung;
char result = nessage.charAt (sun);

return result;

Summer 2004 Cs111 36

Local Data

= Local variables can be declared inside a
method

= The formal parameters of a method create
automatic local variables when the method is
invoked

= When the method finishes, all local variables
are destroyed (including the formal
parameters)

= Keep in mind that instance variables, declared
at the class level, exists as long as the object
exists

= Any method in the class can refer to instance
data

Summer 2004 Cs111 37

Constructors Revisited

= Recall that a constructor is a special method
that is used to initialize a newly created
object

= When writing a constructor, remember that:

it has the same name as the class

it does not return a value

it has no return type, not even voi d

it typically sets the initial values of instance

variables

= The programmer does not have to define a
constructor for a class

Summer 2004 Cs111

38

Overloading Methods

= Method overloading is the process of using
the same method name for multiple methods

= The signature of each overloaded method
must be unique

= The signature includes the number, type, and
order of the parameters

= The compiler determines which version of the
method is being invoked by analyzing the
parameters

= The return type of the method is not part of
the signature

Summer 2004 Cs111 39

Overloading Methods

Version 1 Version 2
float tryMe (int x)

return x + .375; return x*y;

}
Invocation

result = tryMe (25, 4.32)

Summer 2004 Cs111

float tryMe (int x, float y)
{

40

Overloaded Methods

= The println method is overloaded:
printIn(String s)
printin(int i)
println(doubl e d)
and so on...
= The following lines invoke different
versions of the pri ntln method:
Systemout.println("The total is:");
Systemout.printin(total);

Summer 2004 Cs111 41

Overloading Methods

= Constructors can be overloaded

= Overloaded constructors provide
multiple ways to initialize a new object

Summer 2004 Cs111

42

Example

be

PUBTTC
{
M N_FACES

al int -4
punFaces: — // nunber of sides on the die
faceVal ue; // Current value showing on the die

i1 (faces < MN_FACES)
nunFaces = 6;

nunfaces = faces.
faceval ue = 1;

public int getFaceval ue ()

10 faceval ue;

}
Summer 2004 cs 111 43

Example

public class SnakeEyes
{

N
Il Creates two die objects, then rolls both dice a set nunber of
/1 times, counting the nunber of snake eyes that occur.

final int ROLLS = 500;
int snakeEyes = 0, nun, nun2;

Die diel = new Die(); /1 creates a six-sided die
Die die2 = new Die(20); // creates a twenty-sided die

for (int roll =1; roll <= ROLLS; roll++)
nunt = diel.roll();
nun2 = die2.roll

it (nunl == 1 &&
snakeEyes++;

nune == 1) // check for snake eyes

Systemout. printin ("Number of rolls: " + ROLLS);
Systemout.println ("Nunber of snake eyes: " + snakeEyes);
, Systemout.printin ("Ratio: " + (float)snakeEyes/ ROLLS);
}

Summer 2004 Cs111 44

Method Decomposition

= A method should be relatively small, so that it
can be understood as a single entity

= A potentially large method should be
decomposed into several smaller methods as
needed for clarity

= A service method of an object may call one or
more support methods to accomplish its goal

= Support methods could call other support
methods if appropriate

Summer 2004 Cs111 45

Class Diagrams Revisited
= In a UML class diagram, public members can be

preceded by a plus sign
= Private members are preceded by a minus sign

Summer 2004 Cs111 46

Object Relationships

= Objects can have various types of relationships
to each other

= A general association, as we've seen in UML
diagrams, is sometimes referred to as a use
relationship

= A general association indicates that one object
(or class) uses or refers to another object (or
class) in some way

= We could even annotate an association line in
a UML diagram to indicate the nature of the
relationship

e

Summer 2004 Cs111 47

Object Relationships

= Some use associations occur between
objects of the same class

= For example, we might add two
Rat i onal number objects together as
follows:

r3 = rl. add(r2);

= One object (r 1) is executing the
method and another (r 2) is passed as a
parameter

Summer 2004 Cs111 48

Example

i Rt onal Tava Author: Levi s/ Lof tus.

17 Fepresents one rational nunber with a numerator and denori nat or

bl cl ass Rati onal

" numerator. denon nator

Set's up the rational nunber by ensuring a nonzera denom nalor
| ancmaki g only, The numeracor s gned

bl ¢ Rt onal((nt numer i i denor)
¢

({ ks tne pumerstor “store® the sign
enone oy “

Genom = denom + 1
BeRHThSl or " Ebm:

reduce()
)

Returns the numerator of this raii onal number
Tt gethumeratar ()

1" Returns the denom nat or of (his rational nurber

Example

1
of :ms

1
publi ¢ Rati onal reci pr ocal 0

retur Rational (denoninator, numerator);
}
I TYTNEENNS
/1" Adds this rational nunber to the one passed as a parameter
11 A Common’ denort nator 15 found by murt!piying ihe | ndivi duai
1
I e
Jubi [¢ Rati onal add (Rational op2)
{

0t comonDeno nator = denom nator * op2. get Denor nator ()

|7l pureratery = mugerater © op2, get perom nat o ():

171 Runer ai o 2 = 6p2. get Rumer a oi () ** derorm hat o

inl sum= numeratorl + numerator

retur Rational (sum commonDenom nat or)
}
TN

[1 subtracts the rational number passed as a parameter from this
/1 rational nunb

1
publ ¢ Rational subiract (Raiional 0p2)
{

it commnDenomi nat or = denom nator * op2. get Denoi nator ();
Il numerarord = nugerator o op2. get Denon hal or

[A Rdimer at or 2 = op2- get furmer alar U+ danom nat oF

int difference = numeratorl - numerator2;

l‘u T¢ i get Denom nat or () retur Rational (difference, commonDenom nator);
Summer 2004 Cs111 49 Summer 2004 Cs111 50
LR " Returns this rational number as a string.
I1 Mltipli es this rational number by the one passed as a i testing O
PR A T String result
public Rational multiply (Rational op2) (rummrator =<0
int nuner = numerator * op2.getNunerator();
int denom = denom nator * op2.get Denom nat or ();
return new Rational (numer, denom); e nater
}
/1 Divides this rational nunber by the one passed as a paraneter and the Tator by therr oreatest
/1 by multiplying by the reciprocal of the second rational . dreduce ()
Db < Radfonal @i vide (Rati omal opz) 7T (e ator 10
return multiply (op2.reciprocal ()) numerator = nurerator |
! ;
5; g)g\gvrpna;\grsm\ 'ev”" is;ﬁ‘ i gn[a\hecug\"/gr blﬂfheggz‘uc‘eg the one passed ﬁ:?‘n‘“ and returns the greatest ‘tgr‘w;\:;v‘m"w sor of the two
[sl ; e (1 huk, T
public bool ean equal s (Rational op2) { ‘,Ui.ld‘l,mm,n "~
U return (nuner at oy 0p2. get Nunrer at or () f = . nune:
denom nat or == op2. get Denomi nat or()) nun? = nume - num;
i O s
Summer 2004 Cs111 51 Summer 2004 Cs111 52
?uh\ c class Rational Nunbers
41775 eai s Some raii onal et obj ect’s and perior s various = Static methods can be invoked through
;// operations on them th I th th th h
Bl i i i s e class name rather than through a
mimg 1= w5 particular object
Rational r3, r4, r5 6, r7; . .
yatemeu pintin { al nunber: s e = TO write a static method, we apply the
Systemout . println nal - nunber +r2); . s
gL el stz st at i ¢ modifier to the method
ystemout.println (“ril and r2 are equal .");
Systemout.printin (11 and 12 are KT cauel) definition
gsfe:nlarmec'pfyr?.f\a‘n(() The reciprocal of riis: " + r3); . The st at | c modiﬁer can be app“ed to
r4 =rl add(r2); .
variables as well
ar = |t associates a variable or method with
+16); . .
| Sestemou s the class rather than with an object
}Summer 2004 Cs111 53

Summer 2004 Cs111 54

Static Variables and Methods

Aggregation

= Normally, each object has its own data space,
but if a variable is declared as static, only one
copy of the variable exists

= All objects created from the class share static
variables

= Changing the value of a static variable in one
object changes it for all others

= Static methods cannot reference instance
variables, because instance variables don't
exist until an object exists

Summer 2004 Cs111 55

= An aggregate object is an object that

contains references to other objects

For example, an Account object contains a

reference to a St ri ng object (the owner's

name)

= An aggregate object represents a has-a
relationship

= A bank account has a name

= Likewise, a student may have one or more
addresses

Summer 2004 Cs111 56

Example

Example

public class Address
{

private String streetAddress, city, state;
private | ong zi pCode;

?ubhc Address (String street, String town, String st, |ong zip)

street Address = street;
city = town;

state = st;

zi pCode = Zip;

ublic String tostring()

String result;

result = streelAddress + "\n"
result +=cit + state'+ " " + zipCode;
return result;
}
}
Summer 2004 Cs 111 57

public class Student
{

private String firstName, |a:
private Address homeAddr ess, el Adr ess

public Student (String first, String last, Address home,
Address school)

firsthame = first;

1

ublic String toString)
String result;
result = firstham + - -

result +=
result +=

+ lastName + “\n";
o P honhddrese. + “\n";
\n" + school Address;

return result;

}

Summer 2004 Cs111 58

Example

Aggregation in UML

T T
H St udent Body. j ava Aut hor: Lewi s/ Lof tus

// Denonstrates the use of an aggregate class.

R e Ll A Lt T Tt R *
public class StudentBody

{

public static void main (String[] args)

Address school = new Address (”BOO Lancas\e\ Ave.", "Villanova",
A, 19085);

Address j Home = new Address (121, Jum Street”, *Lynchburg’,
51);

Student john =

Student (" Juhr\ e j Home, school);

Address nHome = 1 dress (123 Main Street”, "Euclid", "OH',
Student marsha = new Student ("Narsha", "Jones", ntome, school);
System out. println (john);

Systemout.println ();

System out. println (marsha)

}
}

Summer 2004 Cs111 59

= An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end

StudentBody 1 Student

- firstName : String

+ main(args : String[l) : void - lasthare : String

- homeAddress : Address

- schoolAddress : Address

Address /O + toString() : String
- streetAddress : String
- city : String
- state : String
- zipCode : long

+ toString() : String

Summer 2004 Cs111 60

