Branches and Loops

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Branches

- Branches are used to select and execute specific sections of the code while skipping other sections
- Selection of different sections depend on a condition statement
- We will learn:
 - if statement
 - switch statement

Branches: “if” Statement

- Conditions can be:
 - any real value (0 is false, non-zero is true)
 - combination of relational and logical operators
 - e.g. \((x > 0) \&\& (x < 10)\)
 - logical functions
 - isempty()
 - isnumeric(), ischar()
 - isinf(), isnan()
 - exist()

Branching Examples

- Examples:
 - if \((r \leq 0)\),
 disp(’Radius must be positive’); end
 - if \(\{(\text{grade} < 0) | (\text{grade} > 100)\}\),
 disp(’Grade must be in [0,100] range’); end
 - if isnan(result),
 disp(’Result is infinite’); end

Water tank example:

```matlab
r = input(’Enter the radius of the tank base (in meters):’);
if r <= 0,
    error(’Radius must be positive’);
end
h = input(’Enter the height of the tank (in meters):’);
if h <= 0,
    error(’Height must be positive’);
end
w = input(’Enter the amount of water (in m3):’);
if w <= 0,
    error(’Amount of water must be positive’);
end
capacity = pi * r^2 * h;
space = capacity - w;
if space > 0,
    disp(’There is ’ num2str(space) ’ m3 extra space’);
else
disp(’Tank is full’);
end
```
Branches: “if-else” Statement

```
if ( condition ),
statement 1
statement 2
... else
statement 1
statement 2
... end
```

Branching Examples

- **Example: Assigning letter grades**
 - Range
 - $100 \geq \text{grade} > 95$ A
 - $95 \geq \text{grade} > 86$ B
 - $86 \geq \text{grade} > 76$ C
 - $76 \geq \text{grade} > 66$ D
 - $66 \geq \text{grade} > 0$ F
 - How can we compute the letter corresponding to a given numeric grade?

```
if ( grade > 95 ),
disp( 'Grade is A' );
else if ( grade > 86 ),
disp( 'Grade is B' );
else if ( grade > 76 ),
disp( 'Grade is C' );
else if ( grade > 66 ),
disp( 'Grade is D' );
else
disp( 'Grade is F' );
end
end
end
```

Branching Examples

- **Letter grade example:**
 - if (grade > 95),
 - disp('Grade is A');
 - elseif (grade > 86),
 - disp('Grade is B');
 - elseif (grade > 76),
 - disp('Grade is C');
 - elseif (grade > 66),
 - disp('Grade is D');
 - else
 - disp('Grade is F');
 - end

Branching Examples

- **Example: Finding roots of the quadratic equation “ax^2 + bx + c = 0”**
 - **Pseudocode:**
 - $d = b^2 - 4ac$
 - if $d > 0$,
 - two real roots
 - else if $d == 0$,
 - two identical roots
 - else
 - two complex roots
Branching Examples

% Prompt the user for the coefficients of the equation
% A*X^2 + B*X + C = 0
a = input('Enter the coefficient A: ');
b = input('Enter the coefficient B: ');
c = input('Enter the coefficient C: ');

% Calculate discriminant
discriminant = b^2 - 4*a*c;

% Solve for the roots, depending on the value of the discriminant
if discriminant > 0 % there are two real roots, so...
 x1 = (-b + sqrt(discriminant)) / (2*a);
 x2 = (-b - sqrt(discriminant)) / (2*a);
 disp('This equation has two real roots:');
 fprintf('x1 = %f
', x1);
 fprintf('x2 = %f
', x2);
elseif discriminant == 0 % there is one repeated root, so...
 x1 = (-b) / (2*a);
 disp('This equation has two identical real roots:');
 fprintf('x1 = x2 = %f
', x1);
else % there are complex roots, so...
 real_part = (-b) / (2*a);
 imag_part = sqrt(abs(discriminant)) / (2*a);
 disp('This equation has complex roots:');
 fprintf('x1 = %f +i %f
', real_part, imag_part);
 fprintf('x2 = %f -i %f
', real_part, imag_part);
end

Branching Examples

Example: Decision for playing tennis

outlook = input('How is the outlook? (o)vercast, (s)unny, (r)ainy: ', 's');
if outlook == 'o', disp('You can play tennis');
elseif outlook == 's', humidity = input('How is humidity? (h)igh, (l)ow: ', 's');
 if humidity == 'h', disp('I do not recommend you play tennis');
 elseif humidity == 'l', disp('You can play tennis');
 else disp('Invalid humidity info');
 end
elseif outlook == 'r', wind = input('How is the wind? (s)trong, (w)eak: ', 's');
 if wind == 's', disp('I do not recommend you play tennis');
 elseif wind == 'w', disp('You can play tennis');
 else disp('Invalid wind info');
 end
else disp('Invalid outlook info');
end

Branches: “switch” Statement

switch (expression),
 case value 1, statement 1
 statement group 1
 case value 2, statement 1
 statement 2
 statement group 2
 ...
end

Branches: “switch” Statement

switch (expression),
 case (value set 1), statement 1
 statement group 1
 case (value set 2), statement 1
 statement 2
 statement group 2
 ...
 otherwise, statement 1
 statement 2
 optional statement group that is executed if none of the cases is satisfied
end
Branching Examples

- Example: Odd or even numbers
  ```
  switch (value),
  case {1,3,5,7,9},
      disp( 'Odd number' );
  case {2,4,6,8,10},
      disp( 'Even number' );
  otherwise,
      disp( 'Out of range' );
  end
  ```

Branching Examples

- Example: Unit converter
  ```
  x = input( 'length (in cm): ' );
  u = input( 'unit: ', 's' );
  switch (u),
  case { 'cm', 'centimeter' },
      disp( num2str(x) 'cm' );
  case { 'mm', 'millimeter' },
      disp( num2str(10*x) 'mm' );
  case { 'm', 'meter' },
      disp( num2str(x/100) 'm' );
  case { 'in', 'inch' },
      disp( num2str(2.54*x) 'in' );
  otherwise,
      disp( 'Unknown unit' );
  end
  ```

Loops

- Loops are used to execute a sequence of statements more than once
- We will learn:
 - while loop
 - for loop
- They differ in how the repetition is controlled

Loops: “while” Loop

- Statements are executed indefinitely as long as the condition is satisfied
  ```
  while ( condition ),
      statement 1
      statement 2
      ...
  end
  ```

Loop Examples

- Example: Arithmetic mean and standard deviation of non-negative measurements
  ```
  # Initialize sums.
  n = 0; sum_x = 0; sum_x2 = 0;
  # Read in first value
  x = input('Enter first value: ');
  # While Loop to read input values.
  while x >= 0,
      n      = n + 1;
      sum_x = sum_x + x;
      sum_x2 = sum_x2 + x^2;
      # Read next value
      x = input('Enter next value: ');
  end
  # Calculate the mean and standard deviation
  x_bar = sum_x / n;
  std_dev = sqrt( (n * sum_x2 – sum_x^2) / (n * (n-1)) );
  # Tell user.
  fprintf('The mean of this data set is: %f
', x_bar);
  fprintf('The standard deviation is:    %f
', std_dev);
  fprintf('The number of data points is: %f
', n);
  ```
Loops: “for” Loop

- Statements are executed a specified number of times

```
for index = expression,
    statement 1
    statement 2
... 
end
```

- Expression is usually a vector in shortcut notation first:increment:last

Loop Examples

Example:
```
for x = 1:2:10,
    x
end
```

Output:
```
x = 1
x = 3
x = 5
x = 7
x = 9
```

Example:
```
for x = [1 5 13],
    x
end
```

Output:
```
x = 1
x = 5
x = 13
```

Example:
```
for x = [1 2 3; 4 5 6],
    x
end
```

Output:
```
x = 1 4
x = 2 5
x = 3 6
```

Example: Factorial (n!) of an integer n
```
n = input( 'Please enter n: ' );
if ( ( n < 0 ) | ( fix(n) ~= n ) ),
    error( 'n must be a non-negative integer' );
end
if ( ( n == 0 ) | ( n == 1 ) ),
    f = 1;
else
    f = 1;
    for ii = 2:n,
        f = f * ii;
    end
end
```

Example: Arithmetic mean and standard deviation of non-negative measurements

Pseudocode:
```
Initialize sum_x, sum_x2
Read the number of measurements, n
for i = 1:n, 
    Read value, x
    sum_x ← sum_x + x 
    sum_x2 ← sum_x2 + x^2 
end
x_mean ← sum_x / n
x_std ← sqrt( ( n * sum_x2 – sum_x^2 ) / ( n * (n-1) ) )
Display results to the user
```
Loop Examples

% Initialize sums.
sum_x = 0; sum_x2 = 0;

% Get the number of points to input.
% Note: better to input data at once.

% Check to see if we have enough input data.
if n < 2 % Insufficient data
 disp ('At least 2 values must be entered.');
else % we will have enough data, so let's get it.
 % Loop to read input values.
 for ii = 1:n
 % Read in next value
 x = input('Enter value: ');
 % Accumulate sums.
 sum_x = sum_x + x;
 sum_x2 = sum_x2 + x^2;
 end
 % Now calculate statistics.
 x_bar = sum_x / n;
 std_dev = sqrt((n * sum_x2 - sum_x^2) / (n * (n-1)));
 % Tell user.
 fprintf('The mean of this data set is: %f
', x_bar);
 fprintf('The standard deviation is: %f
', std_dev);
 fprintf('The number of data points is: %f
', n);
end

Loop Examples

num = round((10-1) * rand + 1);
guess = input('Your guess?');
tries = 1;
while (guess ~= num) & (tries < 3)
 guess = input('Your guess?');
tries = tries + 1;
end
fprintf('You guessed correctly in %d tries', tries);

Loop Examples

num = round((10-1) * rand + 1);
guess = input('Your guess?');
tries = 1;
while (guess ~= num) & (tries < 3)
 guess = input('Your guess?');
tries = tries + 1;
end
if (guess == num),
 disp('Congratulations!');
else
 disp('You could not guess correctly');
end

Loop Examples

Example: Nested loops

for ii = 1:3,
 for jj = 1:5,
 p = ii * jj;
 fprintf('%d x %d = %d\n', ii, jj, p);
 end
end
Loops: “break/continue” Statements

- **Break** statement terminates the execution of a loop and passes the control to the next statement after the end of the loop
- **Continue** statement terminates the current pass through the loop and returns control to the top of the loop

Loop Examples

Example:

```matlab
for ii = 1:5,
    if ( ii == 3 ),
        break;
    end
    fprintf( 'ii = %d
', ii );
end
disp( 'End of loop' );
```

Output:

```
ii = 1
ii = 2
End of loop
```

Loop Examples

Example:

```matlab
for ii = 1:5,
    if ( ii == 3 ),
        continue;
    end
    fprintf( 'ii = %d
', ii );
end
disp( 'End of loop' );
```

Output:

```
ni = 1
ii = 2
ii = 4
ii = 5
End of loop
```

Loop Examples

Number guessing example: User has only 3 tries

Pseudocode:

- Pick a random number, num, in [1,10]
- for tries = 1:3,
 - Read user’s new guess
 - Stop if guess is correct

```matlab
num = round( (10-1) * rand + 1 );
for tries = 1:3,
    guess = input( 'Your guess?' );
    if ( guess == num ),
        disp( 'Congratulations!' );
        break;
    end
end
if ( guess ~= num ),
    disp( 'You could not guess correctly' );
end
```

Advice

- Use indentation to improve the readability of your code
- Never modify the value of a loop index inside the loop
- Allocate all arrays used in a loop before executing the loop
- If it is possible to implement a calculation either with a loop or using vectors, always use vectors
- Use built-in MATLAB functions as much as possible instead of reimplementing them