
© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

1
Deitel® Dive-Into™ 

Series: Dive Into 
Visual C++ .NET

Objectives
• To understand the relationship between C++ and 

Visual C++.
• To be able to use Visual C++ to create, compile and 

execute C++ console applications.
• To understand and be able to use the Microsoft’s 

Visual Studio .NET integrated development 
environment.

• To be able to search Microsoft’s on-line 
documentation effectively.

• To be able to use the debugger to locate program logic 
errors.



2 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

1.1 Introduction
Welcome to the Visual C++® .NET integrated development environment (part of the Mi-
crosoft Visual Studio® .NET suite of development tools). In this chapter you will learn how
to create, compile, execute and debug C++ programs using the powerful C++ development
environment from Microsoft—Visual C++ .NET. When you complete this chapter, you
will be able to use Visual C++ to begin building applications. 

This guide does not teach C++; rather, it is intended as a companion to our textbook
C++ How To Program, Fourth Edition or any other ANSI/ISO C++ textbook. C++ How
To Program, Fourth Edition does not teach GUI programming simply because ANSI/ISO
C++ does not provide libraries to create GUIs. Compiler vendors such as Microsoft, Bor-
land and Symantec normally provide their own libraries that support creation of applica-
tions with GUIs. 

Before proceeding with this tutorial, you should be familiar with the topics in Chapter
1, “Introduction to Computers and C++ Programming,” and Chapter 2, “Control Struc-
tures,” of C++ How to Program, Fourth Edition. A few of the examples in this chapter
make reference to functions. For these examples, you should be familiar with the material
through Section 3.5 of Chapter 3, “Functions,” in C++ How to Program, Fourth Edition.
For the programs in Section 1.6 of this guide, you should be familiar with the material in
Chaper 6, “Classes and Data Abstraction,” in C++ How to Program, Fourth Edition.

We hope you enjoy learning about the Visual C++ .NET integrated development envi-
ronment.

1.2 Installation of Visual Studio .NET
This section will guide the user through the installation process for the Visual Studio .NET
programming environment.

1. Insert the Visual Studio .NET disk 1 in the CD-Rom drive.  A dialog will pop up
and display several options (Fig. 1.1). The first option, Windows Component
Update,  updates the computer as needed to complete the installation. The setup
program automatically determines if this step should be performed. If Windows
Component Update is disabled, proceed to step 8. 

Outline

1.1 Introduction
1.2 Installation of Visual Studio .NET
1.3 Integrated Development Environment Overview: Visual C++
1.4 On-line Visual C++ Documentation
1.5 Creating and Executing a C++ Application
1.6 Compiling Programs with Multiple Source Files
1.7 Debugger

1.7.1 Debugging an Application



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

2. Clicking the 1 will display the Web Projects Requirement window (Fig. 1.2).
This is installed if the programmer plans to host Web projects.  For this example,
click Continue to skip that part of the installation. 

Fig. 1.1 Visual Studio .NET setup screen.

Fig. 1.2 Setup for hosting Web projects.



4 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

3. The installation prompts the user for the Windows Component Update disk
(Fig. 1.3). Insert the disk into the CD drive and press enter. If multiple drives are
used, be sure to appropriately specify the letter of the drive. 

4. Setup will then prepare the computer for installation. Once setup prepares for in-
stallation, a License Agreement is displayed (Fig. 1.4).  Read the agreement to
understand the terms and conditions for using Windows Components. If you agree
to the license, select I accept the agreement and click Continue. 

5. A new window is displayed that lists the components to be installed (Fig. 1.5). In-
formation about each component is accessible on the Internet via the More Infor-
mation button. 

Fig. 1.3 Windows Component update CD prompt.

Fig. 1.4 License agreement for the Windows Component updates.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

6. Installation asks for the user name and password information required to log into
the machine.  This speeds the process of installation because the machine is re-
quired to reboot.  The personal information is not saved. To use this feature, check
the Automatically log on check box and enter the user name and password in
the appropriate fields (Fig. 1.6). 

Fig. 1.5 List of components to be installed.

Fig. 1.6 Automatically logging back in as a specific user.



6 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

7. Click Install Now! to begin the installation (Fig. 1.7). 

8. After the computer reboots, it is ready to perform part 2 (Fig. 1.8), which is the ac-
tual installation of Visual Studio .NET. Clicking the 2 will prompt the user to re-
insert the 1st installation CD. Do so, and click OK to begin the installation process. 

Fig. 1.7 Installing the needed Windows Components.

Fig. 1.8 Installing Visual Studio .NET Setup screen.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

9. Setup again prepares the computer for installation.  When complete, the Visual
Studio .NET license agreement is presented and the user is asked for the
Product Key and a name.  After reading the agreement, select I Agree to accept
the terms in the document.  Enter the Product Key and click Continue. The
Product Key is located on the first installation CD. If the key is entered incor-
rectly, setup instructs the user to validate the key and click Continue once more.
Note that Continue is not enabled until the user agrees to the license agreement
and a Product Key is provided (Fig. 1.9). 

10. An options window is presented next. This allows the user to see how much space
is available and how much Visual Studio .NET occupies.  It also allows the user
to specify a directory for installation—the default is C:\Program Files\Mi-
crosoft Visual Studio .NET\. There is a list of components that will be
installed at the center of the screen. On the left is a detailed list of items that can
be installed if the user so desires (Fig. 1.10). 

Fig. 1.9 Visual Studio .NET license agreement and CD key validation.



8 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

11. Click Install Now! to begin the installation process. Insert CDs 2, 3 and 4 when
prompted to do so. While the installation commences (Fig. 1.11), links are dis-
played that  bring up additional information about certain topics. These topics in-
clude the .NET Framework, XML Web Services, Language Enhancements,
Integrated Development Environment and MSDN Subscriptions. Click Done
when installation completes. 

Fig. 1.10 Visual Studio .NET options screen.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The last step, Service Releases, obtains updates that might have been released for
the Visual Studio environment. This step is not covered in the tutorial, but is as simple as
the previous steps. Visual Studio .NET is now installed and ready for use.  

1.3 Integrated Development Environment Overview: Visual 
C++
Figure 1.12 shows the initial screen image of the Microsoft Visual C++ integrated devel-
opment environment (IDE). This environment contains everything you need to create C++
programs—an editor (for typing and correcting your C++ programs), a compiler (for trans-
lating your C++ programs into machine language code), a debugger (for finding logic er-
rors in your C++ programs after they are compiled) and much more. The environment
contains many buttons, menus and other graphical user interface (GUI) elements you will
use while editing, compiling and debugging your C++ applications. 

1.4 On-line Visual C++ Documentation
Visual C++ .NET uses the Microsoft Developer Network (MSDN™) documentation
(Fig. 1.13), which is accessible by selecting Microsoft Visual Studio .NET Documen-
tation from the Start > Programs > Microsoft Visual Studio .NET menu. The doc-
umentation is also accessible from within Visual Studio .NET. To access this embedded
version, select Contents from the Help menu. Microsoft has combined the documenta-
tion for all their development tools into MSDN just as they have combined the development
tools (e.g., Visual Basic®, Visual C++, Visual J++®, etc.) into one product suite called Vi-

Fig. 1.11 Installing Visual Studio .NET.



10 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

sual Studio®. The on-line documentation for a C++ term is also displayed by clicking the
word in an editor window and pressing the F1 key.

The Visual C++ documentation is also accessible via the World Wide Web at the
Microsoft Developer Network Web site

http://msdn.microsoft.com/library

Fig. 1.12 Visual Studio start page.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

If you have not already registered for the Microsoft Developer Network, you will be
asked to register. There is no charge for registration at the Web site. The documentation is
arranged hierarchically. The Visual C++ documentation is found under

.NET Development
   Visual Studio .NET
      Product Documentation
         Visual C++

Information about all aspects of Visual C++ is available. Topics range from the Stan-
dard C++ Library to the Microsoft Foundation Classes (MFC). Topics are displayed in
tree-view format (see the leftmost portion of Fig. 1.13). Clicking the left mouse button on
the plus (+) sign next to a topic expands its subtopics. [Note: For the rest of this chapter,
we refer to “clicking the left mouse button” simply as clicking.] 

The Visual Studio .NET Combined Collection toolbar (the row of icons near the
top of the window in Fig. 1.13) is used to navigate through the on-line documentation in a
manner similar to viewing pages in a Web browser. In fact, a modified version of
Microsoft’s Internet Explorer Web browser is used to view the documentation. Clicking
the left and right arrows on this toolbar move back and forward, respectively, through any
previously viewed pages. The Stop button causes the program to stop loading the current

Fig. 1.13 On-line documentation.



12 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

topic. The Refresh button reloads the current topic from the document’s source. The
toolbar also provides a Home button that displays the MSDN Library Visual Studio
.NET Help Collection page.

In the left panel, the user can control the display in the right panel by selecting the
Filter to use and selecting a tab for viewing the Contents, Index, Search or Favorites.
The Contents tab displays the tables of contents. The Index tab displays a list of key
terms from which to select a topic. The Search tab allows a programmer to search the
entire on-line documentation contents for a word or phrase. The Favorites tab allows the
user to save links to interesting topics for future reference. 

On-line information is divided into categories. Each category is preceded by a book
icon. Visual C++, under Visual Studio .NET, is the starting point for navigating the on-
line documentation for C++. 

The Getting Started section (Fig. 1.14) contains links to various topics in the docu-
mentation, including Porting and Upgrading, Visual C++ Walkthroughs and Get-
ting Assistance. These topics cover a broad range of subjects such that a programmer
new to Visual C++, regardless of programming background, can find something of interest.

Getting Started includes multiple topics, such as What’s New in Visual Studio
.NET, Visual C++ Standard Edition and Walkthroughs. The What’s New in
Visual Studio .NET topic explains the newest features introduced in Visual C++ .NET.
The Visual C++ Standard Edition includes the Visual C++ Standard Edition Fea-
tures topic, which outlines and describes the latest features that relate to libraries, environ-
ments, wizards and more.

Fig. 1.14 Expanding the Visual C++ topics.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 13

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The Visual C++ Reference category contains multiple subcategories—two of
which are Visual C++ Libraries and C/C++ Languages. The Visual C++ Libraries
category contains information about the Active Template Library (ATL)—a set of C++ class
templates used to develop distributed applications (i.e., programs that communicate with
each other over a network to perform a task). The category also includes information about
the Run-time library and Standard C++ library—sets of header files that automate pro-
gramming tasks and provide necessary functionality, such as input and output. The C/C++
Languages category contains information about Microsoft’s implementation of C++. It
provides a reference for keywords and operators that are a part of the C++ language. The
text in a topic is hyperlinked to related text via the Hypertext Markup Language (HTML)
technique of highlighting a term with color and underlining it to indicate which words can
be clicked to display a definition or other details about a term.

The Visual C++ Samples category provides subcategories with example programs
for some of the most important features in Visual C++.

1.5 Creating and Executing a C++ Application
You are now ready to begin using the Visual C++ IDE to create a simple Win32 console
application. When executed, Win32 console applications get input from a console window
(a text-only display that predates Windows) and display data to a console window. This
type of application is used for the example and exercise programs in C++ How to Program,
Fourth Edition.

Program files in Visual C++ are grouped into projects. A project is a text file that con-
tains the names and locations of all its program files. Project file names end with the .dsp
(describe project) extension. Before writing any C++ code, you should create a project.
Click File, New and select the Project… menu item to display the New Project dialog
of Fig. 1.15. The New Project dialog lists the available Visual C++ project types. Note
that your New Project dialog may display different project types depending on which
Microsoft development tools are installed on your system. When you create a project, you
can create a new workspace (a folder and control file that act as a container for project files)
or combine multiple projects in one workspace. A workspace is represented by a .dsw
(describe workspace) file. The examples in this guide have one project per workspace.

Starting with the New Project window, a series of dialog windows guides the user
through the process of creating a project and adding files to the project. The IDE creates the
folders and control files necessary to represent the project. 

From the list of project types, click Visual C++ Projects and select Win32 Project
from the list of templates. The Name field is where you specify the name of the project.
Click in the Name field and type Welcome for the project name.

The Location field is where you specify the location on disk where you want your
project to be saved. If you do not modify the directory path, Visual C++ adds the project
name to the value in the Location field and stores your projects in this directory. Although
this is not shown, we selected our D: drive (we edited the Location field to display
D:\Welcome). You may, of course, choose a different location. You can do this by
pressing the Browse button (Fig. 1.15) and navigating to the desired location. Pressing
OK closes the New Project dialog and displays the Win32 Application Wizard dialog
(Fig. 1.16).



14 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The Win32 Application Wizard dialog displays the current project settings. On the
left section of the dialog, select Application Settings for additional project configura-
tion options, shown in Fig. 1.17. Under Application type, select Console application

Fig. 1.15 New Project dialog displaying lists of Project Types and Templates.

Fig. 1.16 Win32 Application Wizard Welcome dialog.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 15

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

and under Additional options, check Empty project. A console application simply
runs in a console window, rather than in a Windows GUI component, which is the default
setting. The Empty project option prevents Visual C++ from automatically generating
and adding files to the project. The programmer must add source code files to the project.
The Add support for list allows the programmer to utilize the Microsoft Foundation
Classes or the Standard Template Library. These options are intended for more compli-
cated programs than this example.

Figure 1.18 shows the Visual C++ IDE after creating an empty Win32 Project. The
IDE displays the project name (i.e., Welcome) in the title bar, and shows the Solution
Explorer pane and the Properties pane. Other panes are available that might not always be
open. To open a pane, select it from the View menu. For instance, if the Output pane is not
visible, select Output from the View > Other Windows menu. The Output pane displays
various information, such as the status of your compilation and compiler error messages
when they occur.

Fig. 1.17 Win32 Application Wizard’s Application Settings.



16 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The Solution Explorer pane displays the names of the files that make up the project.
Clicking the plus sign, +, to the left of Welcome displays three empty folders: Source
Files, Header Files and Resource Files. Source Files displays C++ source files (i.e.,
.cpp files), Header Files displays header files (i.e., .h files) and Resource Files dis-
plays resource files (i.e., .rc files that define window layouts). For this example we only
use the Source Files folder. Select the Class View tab at the bottom of the Solution
Explorer pane to view the classes, class members (discussed in Chapter 6 of C++ How To
Program, Fourth Edition), and functions (discussed in Chapter 3 of C++ How To Pro-
gram, Fourth Edition) in your project. 

The next step is to add a C++ file to the project. Right-click on Source Files in the
Solution Explorer and select Add, then Add New Item… to display the Add New
Item… dialog (Fig. 1.20). The Add New Item… dialog displays a list of Categories and
Templates. The options might vary based on the Microsoft development tools installed
on your system.

Select C++ File for a C++ file. The Name field is where you specify the name of the
C++ file. Enter welcome in the Name field. You do not have to enter the file name suffix
“.cpp” because it is implied when you select the file type. Do not modify the Location

Fig. 1.18 Visual C++ IDE displaying an empty project.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 17

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

text box. Click Open to close the dialog. The C++ file is now saved to disk and added to
the project. In our example, the file welcome.cpp is saved to the location D:\Welcome
(the combination of the Location field and the project name). Figure 1.21, shows the IDE
after adding welcome.cpp to the project. In Fig. 1.21 we clicked the + character next to
Source Files to see that the C++ source file is indeed part of the project. The plus +
becomes a minus -, and vice versa, when clicked.

Common Programming Error 1.1
Forgetting to add a C++ source file that is part of a program to the project for that program
prevents the program from compiling correctly. 1.1

We are now ready to write a C++ program. Type the following sample program into
the source code window (Fig. 1.19). [Note: The code examples for this guide are available
at the Deitel & Associates, Inc. Web site (www.deitel.com). Click the “downloads”
link to go to our downloads page.]

The source code window is maximized (also called docked) in Fig. 1.21. Click the
Restore button to restore the source code window to its default size.

Testing and Debugging Tip 1.1
Click in front of a brace (i.e., [ or {) or a parenthesis (i.e., () and press Ctrl + ] to find the
matching brace or parenthesis. 1.1

1 // welcome.cpp
2 #include <iostream>
3
4 using std::cout;
5 using std::endl;
6
7 int main()
8 {
9    cout << "Welcome to Visual C++!" << endl;

10
11    return 0;
12
13 }

Fig. 1.19 Code for welcome.cpp.



18 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

Fig. 1.20 The Add New Item dialog displaying a list of templates.

Fig. 1.21 IDE after adding a C++ source file.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The Visual C++ IDE has a highlighting scheme called syntax coloring for the key-
words and comments in a C++ source file—you may have noticed this while you were
typing the program. Syntax color highlighting is applied as you type your code and is
applied to all source files opened in Visual C++. By default, keywords appear in blue, com-
ments in green and other text in black, but you can set your own color preferences.

Testing and Debugging Tip 1.2
Visual C++’s syntax highlighting helps the programmer avoid using keywords accidentally
as variable names. If a name appears blue (or whatever color you have selected for key-
words), it is a keyword and you should not use it as a variable name or other identifier. 1.2

Another useful editor feature is IntelliSense®. When typing certain language elements,
IntelliSense displays help automatically to let the programmer select a symbol from a list
of names that can appear in the current context in the program; this saves typing time as
well as the time it might otherwise take the programmer to look up options. 

Figure 1.22 shows an example of IntelliSense. When the c in cout is typed, Visual
C++ automatically displays a list of available functions and operators. 

Testing and Debugging Tip 1.3
IntelliSense helps the programmer type a correct program. 1.3

After you have typed the program, click Save (in the File menu) or click the Save
button (the one that resembles a floppy disk) on the tool bar to save the file. 

Before executing a program, you must eliminate all syntax errors (also called compi-
lation errors) and create an executable file. A syntax error indicates that code in the pro-
gram violates the syntax (i.e., the grammatical rules) of C++.

To compile the C++ file into an executable, click the Build menu’s Build Welcome
command. Compiler messages and errors appear in the output pane (Fig. 1.23). If there are no
errors when compilation is complete, Welcome: 0 error(s), 0 warning(s) should appear
in the output pane, as shown in Fig. 1.23 (this is sometimes called the “happy window”).

If an error message appears in the output pane, double-clicking anywhere on the error
message displays the source file and places a black arrow marker in the margin indicator
bar (i.e., the gray strip to the left of the source code), indicating the offending line as shown
in Fig. 1.24. The error in this particular case is a missing < character after cout.

Fig. 1.22 IntelliSense.



20 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

Error messages are often longer than the output pane’s width. The complete error mes-
sage can be viewed either by using the horizontal scrollbar above the tabs at the bottom of
the screen or by reading the status pane, located at the bottom of the IDE. The status pane
displays only the selected error message.

If you do not understand the error message, highlight the error message number by
dragging the mouse over the number, then press the F1 key. This displays a help file that
provides information about the error and some helpful hints as to the cause of the error.
Please keep in mind that C++ compilers may mark a line as having an error when, in fact,
the error occurs on a previous line of code. 

Fig. 1.23 Output pane showing a successful build.

Fig. 1.24 Black marker indicating that a line contains an error.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

After fixing the error(s), recompile the program. C++ compilers often list more errors
than actually occur in the program. For example, a C++ compiler may locate a syntax error
in your program (e.g., a missing semicolon). That error may cause other errors in the pro-
gram when, in fact, there may not be any other errors. 

Testing and Debugging Tip 1.4
When a syntax error on a particular line is reported by the compiler, check that line for the
syntax error. If the error is not on that line, check the preceding few lines of code for the
cause of the syntax error. 1.4

Testing and Debugging Tip 1.5
After fixing one error, recompile your program. You may observe that the number of overall
errors perceived by the compiler is significantly reduced. 1.5

Once the program compiles without errors, you can execute the program by clicking
Start Without Debugging in the Debug menu. The program is executed in a console
window as shown in Fig. 1.25. Pressing any key closes the console window.

To create another application, follow the same steps outlined in this section using a dif-
ferent project name and directory. Before starting a new project, close the current project
by selecting the File menu’s Close Solution menu item. If a dialog appears asking if all
document windows should be closed or if a file should be saved, click Yes. You are now
ready to create a new project for your next application or open an existing project. To open
an existing project, in the File menu you can select the Recent Projects option to select
a recent workspace or select Open then Project... to see a dialog and select a workspace
(.dsw file) to open.

1.6 Compiling Programs with Multiple Source Files
More complex programs often consist of multiple C++ source files.  We introduce this con-
cept, called multiple source files, in Chapter 6 of C++ How To Program, Fourth Edition.
This section explains how to compile a program with multiple source files using the Micr-
soft Visual Studio .NET IDE.

Compiling a program that has two or more source files will be demonstrated using the
Time class (Fig. 6.5–Fig. 6.7 from Chapter 6 of C++ How To Program, Fourth Edition),
shown in Figure 1.26–Figure 1.28.

Fig. 1.25 C++ program executing in a console window.



22 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

1 // Fig. 6.5: time1.h
2 // Declaration of class Time.
3 // Member functions are defined in time1.cpp
4
5 // prevent multiple inclusions of header file
6 #ifndef TIME1_H
7 #define TIME1_H
8
9 // Time abstract data type definition

10 class Time {
11
12 public:
13    Time();                        // constructor
14    void setTime( int, int, int ); // set hour, minute, second
15    void printUniversal();         // print universal-time format
16    void printStandard();          // print standard-time format
17
18 private:
19    int hour;     // 0 - 23 (24-hour clock format)
20    int minute;   // 0 - 59
21    int second;   // 0 - 59
22
23 }; // end class Time
24
25 #endif

Fig. 1.26 Time class definition.

1 // Fig. 6.6: time1.cpp
2 // Member-function definitions for class Time.
3 #include <iostream>
4
5 using std::cout;
6
7 #include <iomanip>
8
9 using std::setfill;

10 using std::setw;
11
12 // include definition of class Time from time1.h
13 #include "time1.h" 
14
15 // Time constructor initializes each data member to zero.
16 // Ensures all Time objects start in a consistent state.
17 Time::Time() 
18 { 
19    hour = minute = second = 0; 
20
21 } // end Time constructor
22
23 // Set new Time value using universal time. Perform validity
24 // checks on the data values. Set invalid values to zero.

Fig. 1.27 Time class member-function definitions.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

25 void Time::setTime( int h, int m, int s )
26 {
27    hour = ( h >= 0 && h < 24 ) ? h : 0;
28    minute = ( m >= 0 && m < 60 ) ? m : 0;
29    second = ( s >= 0 && s < 60 ) ? s : 0;
30
31 } // end function setTime
32
33 // print Time in universal format
34 void Time::printUniversal()
35 {
36    cout << setfill( '0' ) << setw( 2 ) << hour << ":"
37         << setw( 2 ) << minute << ":"
38         << setw( 2 ) << second;
39
40 } // end function printUniversal
41
42 // print Time in standard format
43 void Time::printStandard()
44 {
45    cout << ( ( hour == 0 || hour == 12 ) ? 12 : hour % 12 )
46         << ":" << setfill( '0' ) << setw( 2 ) << minute
47         << ":" << setw( 2 ) << second 
48         << ( hour < 12 ? " AM" : " PM" );
49
50 } // end function printStandard

1 // Fig. 6.7: fig06_07.cpp
2 // Program to test class Time.
3 // NOTE: This file must be compiled with time1.cpp.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 // include definition of class Time from time1.h

10 #include "time1.h"
11
12 int main()
13 {
14    Time t;  // instantiate object t of class Time
15
16    // output Time object t's initial values
17    cout << "The initial universal time is ";
18    t.printUniversal();   // 00:00:00
19    cout << "\nThe initial standard time is ";
20    t.printStandard();    // 12:00:00 AM
21
22    t.setTime( 13, 27, 6 );   // change time
23
24    // output Time object t's new values

Fig. 1.28 Program to test class Time.

Fig. 1.27 Time class member-function definitions.



24 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

1.  The first step to compiling multiple source files is to create a project. Follow the
steps in Section 1.5 of this guide to create a project.

2. Next create the .cpp source files using the same method described in Section 1.5.

3. If your program contains .h header files, follow the steps for adding a .cpp file,
only right click on the Header Files folder instead of the Source Files folder
in the Solution Explorer. Figure 1.29 shows an example project containing the
Time class example.

25    cout << "\n\nUniversal time after setTime is ";
26    t.printUniversal();   // 13:27:06
27    cout << "\nStandard time after setTime is ";
28    t.printStandard();    // 1:27:06 PM
29
30    t.setTime( 99, 99, 99 );  // attempt invalid settings
31
32    // output t's values after specifying invalid values
33    cout << "\n\nAfter attempting invalid settings:"
34         << "\nUniversal time: ";
35    t.printUniversal();   // 00:00:00
36    cout << "\nStandard time: ";
37    t.printStandard();    // 12:00:00 AM
38    cout << endl;
39
40    return 0; 
41
42 } // end main

Fig. 1.29 Visual Studio project containing multiple source files.

Fig. 1.28 Program to test class Time.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

4. Next, use the method described in Section 1.5 to compile and run the program.
Figure 1.30 shows the output for the Time class example.

1.7 Debugger
The Visual C++ IDE provides a debugger tool to help the programmer find run-time logic
errors in programs that compile and link successfully but do not produce expected results.
The debugger lets the programmer view the executing program and its data as the program
runs either one step at a time or at full speed. The program stops on a selected line of code
or upon a fatal run-time error. When the programmer does not understand how incorrect
results are produced by a program, running the program one statement at a time and mon-
itoring the intermediate results can help the programmer isolate the cause of the error. The
programmer can then correct the code.

To use the debugger, set one or more breakpoints. A breakpoint is a marker set at a
specified line of code that causes the debugger to suspend execution of the program upon
reaching that line of code. Breakpoints help the programmer verify that a program is exe-
cuting correctly. A breakpoint is set by clicking the line in the program where the break-
point is to be placed and clicking the New Breakpoint... button in the Debug toolbar
(Fig. 1.31). The New Breakpoint... button is disabled unless the C++ code window is the
active window (clicking in a window makes it active). When a breakpoint is set, a solid red
circle appears in the margin indicator bar to the left of the line. Breakpoints are removed by
clicking the line with the breakpoint and clicking the Remove Breakpoint button or
pressing the F9 key. To toggle a breakpoint on or off, right-click on the appropriate line of
code.

Breakpoints are persistent, meaning when a project is closed and reopened, any break-
points set during a previous debugging session remain set. You can gather information
about breakpoints by selecting the Breakpoints tab from the bottom-right sub-window of
the IDE. When selected, the Breakpoints tab can be used to display the New Break-
point... dialog (Fig. 1.32), by clicking the New Breakpoint button.

Fig. 1.30 Output for Time class example.

Fig. 1.31 Debug toolbar



26 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The New Breakpoint dialog displays all the breakpoints currently set for the pro-
gram. A checkbox appears next to each breakpoint. If the breakpoint is active, the checkbox
contains a check. If the breakpoint is disabled, the checkbox is empty. A disabled break-
point will not cause the debugger to stop but may be re-enabled at a later time. Clicking the
checkbox allows the user to toggle the breakpoint on (checked) or off (unchecked). Addi-
tional breakpoints can be added by entering the desired line number into the Line field after
clicking on the New button. Breakpoints can be set in several ways. Using the Function
tab allows the programmer to set a breakpoint at a certain location within the scope of a
function. The File tab allows the programer to set a breakpoint at a desired line of code
within a specified file. A breakpoint can be set at a memory location by using the Address
tab. Lastly, a breakpoint can be set to halt the program when a certain variable’s value
changes by using the Data tab.

Visual C++ also allows breakpoints to be enabled when certain conditions are true. The
programmer specifies the line number in the Line field, in the File tab, and presses the
Condition... button to display the Breakpoint Condition dialog (Fig. 1.33). A condi-
tion is specified in the Condition field. Figure 1.34 shows the Breakpoints dialog with
the new breakpoint. 

Fig. 1.32 New Breakpoint dialog.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

Figure 1.35 shows the debugging environment with a disabled breakpoint. Notice that
the disabled breakpoint is still visible but it appears as an empty circle. To make the break-
point active, click the empty checkbox next to the breakpoint in the Breakpoints dialog.

Fig. 1.33 Setting a condition for a breakpoint.

Fig. 1.34 New Breakpoint window after a condition has been set.



28 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

Testing and Debugging Tip 1.6
Loops that iterate many times can be executed in full (without stopping every time through
the loop) by placing a breakpoint after the loop and selecting Go from the Debug menu. 1.6

Testing and Debugging Tip 1.7
Disabled breakpoints allow the programmer to maintain breakpoints in key locations in the
program so they can be used again when needed. Disabled breakpoints are always visible. 1.7

The bottom portion of the IDE is divided into two windows—the Autos window (i.e.,
the left window) and the Call Stack window (i.e., the right window). The Autos window
contains a list of the program’s initialized variables. Note that different variables can be
viewed at different times, by clicking either the Autos, Locals or Watch 1 tabs. The
Autos tab displays the name and value of the variables or objects (discussed in Chapter 6
of C++ How To Program, Fourth Edition). The Locals tab displays the name and current
value for all the local variables or objects in the current function’s scope. The Watch 1 tab
displays data about any objects or variables being watched. 

The variable values listed in any of the tabs can be modified by the user for testing pur-
poses. To modify a variable’s value, click the Value field and enter a new value. Any mod-
ified value is colored red to indicate that it was changed during the debugging session by
the programmer.

Often, certain variables are monitored by the programmer during the debugging pro-
cess—a process known as setting a watch. The Watch 1 tab allows the user to watch vari-
ables as their values change. Changes are displayed in the Watch 1 tab. 

Variables can be typed directly into the Watch 1 tab or dragged with the mouse from
either the other tabs or the source code window and dropped into the Watch 1 tab. A vari-
able can be deleted from the Watch 1 tab by selecting the variable name and pressing the
Delete key.

Fig. 1.35 Debugger with disabled breakpoint.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

Like the Autos tab, variable values can be modified in the Watch 1 tab by editing the
Value field. Changed values are colored red. Note also that the current value of a variable
during debugging can also be viewed by resting the mouse cursor over the name of that
variable in the source code window (Fig. 1.36).

The Debug toolbar(Fig. 1.31) contains buttons that control the debugging process.
These buttons perform the same actions as the Debug menu items. The Debug toolbar
can be displayed by positioning the mouse pointer over an empty region of the main menu
or any toolbar, right-clicking the mouse and selecting the Debug option in the popup
menu.

The Restart button restarts the application, stopping at the beginning of the program
to allow the programmer to set breakpoints before starting to execute the code. The Stop
Debugging button ends the debugging session to let the programmer edit and rebuild the
program before running another test. 

Code can be altered when the program is suspended in debug mode. Once the debugger
resumes, the IDE asks if the programmer would like to continue using the changes made.
This might require Visual Studio .NET to re-build the program. [Refer to the on-line doc-
umentation for limitations on this feature.] Show Next Statement places the cursor on
the same line as the yellow arrow that indicates the next statement to execute. Show Next
Statement is useful to reposition the cursor to the same line as the yellow arrow when
viewing the source code during debugging.

The Step Into button executes program statements, one per click, including code in
functions that are called, allowing the programmer to confirm the proper execution of the
function, line-by-line. Functions that can be stepped into include programmer-defined
functions and C++ library functions. If you want to step into a C++ library function, Visual
C++ may ask you to specify the location of that library.

Testing and Debugging Tip 1.8
The debugger allows you to “step into” a C++ library function to see how it uses your func-
tion call arguments to produce the value returned to your program. 1.8

Fig. 1.36 Displaying a variables value using the mouse pointer.



30 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

The Step Over button executes the next executable line of code and advances the
yellow arrow to the following executable line in the program. If the line of code contains a
function call, the function is executed in its entirety as a single step. This allows the user to
execute the program one line at a time and examine the execution of the program without
seeing the details of every function that is called. This is especially useful at cin and cout
statements.

The Step Out button allows the user to step out of the current function and return con-
trol back to the line that called the function. If you Step Into a function that you do not
need to examine, click Step Out to return to the caller. 

Testing and Debugging Tip 1.9
Loops that iterate many times can be executed in full by placing the cursor after the loop in
the source code window, right clicking and selecting the Run to Cursor item. 1.9

Testing and Debugging Tip 1.10
If you accidently step into a C++ library function, click Step Out to return to your code. 1.10

The QuickWatch button displays the QuickWatch dialog (Fig. 1.37), which is
useful for monitoring expression values and variable values. The QuickWatch dialog pro-
vides a “snapshot” of one or more variable values at a point in time during the program’s
execution. To watch a variable, enter the variable name or expression into the Expression
field and press Enter. As with the Autos window and Watch 1 window, values can be
edited in the Value field, but changed values are not color coded red. Clicking Recalcu-
late is the same as pressing Enter. 

To maintain a longer watch, click the Add Watch button to add the variable to the
Watch 1 tab. When the QuickWatch dialog is dismissed by clicking Close, variables in
the dialog are not preserved. The next time the QuickWatch dialog is displayed, the
Name and Value fields are empty. The QuickWatch window can also be used to eval-
uate expressions such as arithmetic calculations (e.g., a + b - 9, etc.) and variable assign-
ments (e.g., number = 20, etc.) by typing the expression into the Expression field.

The Call Stack window contains the program’s function call stack. A function call
stack is a list of the functions that were called up to the current line in the program. This
helps the programmer see the flow of control that led to the current function being called. 

The right sub-window also contains tabs for switching to the Command window and
the Output window. The Command window allows the programmer to enter input from
within IDE. The Output window allows the programmer to see the program output from
within the IDE as well.



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 31

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

Testing and Debugging Tip 1.11
When using the debugger to run a program at full speed, certain problems such as infinite
loops can usually be interrupted by selecting Break All from the Debug menu. 1.11

1.7.1 Debugging an Application

This section guides the programmer through the debugging process for a simple C++ ap-
plication, Debug.cpp (Fig. 1.38). This applications obtains a number from the user and
counts from 1 to that number.

Fig. 1.37 QuickWatch dialog.

1 // Debug.cpp
2
3 #include <iostream>
4
5 using std::cin;
6 using std::cout;
7 using std::endl;
8
9 // function that gets an integer from the user

10 int getNumber()
11 {
12    int number;    // holds user input integer
13
14    // ask user for and store integer
15    cout << "Enter an integer: ";
16    cin >> number;
17    
18    return number; // return integer entered by user
19
20 } // end function getNumber

Fig. 1.38 Code for Debug.cpp



32 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

1. In order to debug the code, Debug.cpp needs to be compiled into an executable
file.  Create a project for Debug.cpp as described in Section 1.5. Next, compile
the program into an executable file.

2. In the window that contains the source code, a breakpoint is added by clicking the
line in the program where the breakpoint is to be placed and clicking the New
Beakpoint… button in the Debug toolbar. A breakpoint can also be added by
clicking in the gray box to the left of the line of code where the breakpoint is to be
placed. Click in the gray box to the left of line 25.  The red circle that appears in-
dicates that a breakpoint has been set at that line.

3. Repeat step 2, only this time set breakpoints at lines 29, 33 and 36. When complete
the window should appear as shown (Fig. 1.39).

21
22 int main()
23 {
24    // get integer from user
25    int number = getNumber();
26
27    // end program if user does not enter positive number
28    if ( number <= 0 )
29       return 0;
30
31    // display integers from one to user input number
32    else
33       for ( int i = 1; i <= number; i++ )
34          cout << i << endl;
35
36    return 0;
37
38 } // end main

Fig. 1.39 Breakpoints set in a program.

Fig. 1.38 Code for Debug.cpp



Chapter 1 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

4. Click Start from the Debug menu to start the debugger. Because we have chosen
to debug a console application, the console window (i.e., command prompt) ap-
pears (Fig. 1.40). All program interaction (input and output) occurs within this
window. Program execution suspends for input and at breakpoints. You might
need to manually switch between the IDE and the console window to perform in-
put. To switch between windows, use Alt + Tab or click the program’s panel on
the Windows taskbar at the bottom of the screen.
Figure 1.41 shows program execution suspended at a breakpoint. The yellow ar-
row to the left of the statement

   int number = getNumber();

indicates that execution is suspended at this line. This statement will be the next
statement executed. Note in the IDE that the title bar displays [break] to indicate
that the IDE is in debug mode. 

5. To add a watch, type the text number into the name field of the Watch1 tab lo-
cated at the bottom of the IDE. Notice that the value for number is its memory
address because it has not been given a value.

Fig. 1.40 C++ program executing in a command window during debug mode.

Fig. 1.41 Execution halted at a breakpoint.



34 Deitel® Dive-Into™ Series: Dive Into Visual C++ .NET Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved.

6. Click Continue. At this point, the program is executing and the Input dialog is
displayed. Enter 10 into the text field and hit Enter. The program briefly resumes
execution and then suspends.  Add another watch for variable i. This watch can
only be added when within the scope of i, meaning inside the for loop.  If the
program is not within the scope of i, an error will be displayed for the value of i
in the Watch 1 pane. The Watch 1 pane now displays information about the in-
teger number and the variable i.  The text is changed to a red font to indicate that
changes have been made to that variable.  number is used to store the number en-
tered by the user, therefore it always maintains its original value. Figure 1.42
shows watches set for number and i.

7. Click Step Over to execute the individual steps of the loop each time the loop is
executed. Or click Step Out to perform the whole loop in one step. Clicking
Continue will go to the next break point.

8. The main window indicates that the debugger has completed and the count from
1 to 10 is displayed in the output window (Fig. 1.43). Even though a breakpoint
was set on line 29, the program never suspended on that line because the code on
line 29 never executed. The code on lines 29 and 34 either end the program or dis-
play the numbers to the outut window, depending on the number entered by the
user. Start the debugger again, by clicking Restart in the Debug menu, but enter
a non-positive number for the value of number into the program input dialog and
observe how the debugger operates.

9. When you have finished your debugging session, click the Stop Debugging
button on the Debug toolbar. The environment returns to the pre-debugging lay-
out. Refer to the on-line documentation for additional debugger features.

Fig. 1.42 Watches set for number and i.

Fig. 1.43 Output of Debug.cpp.


