
5
GNU Compiler

Collection (GCC)

Objectives
• To be able to use a text editor to create C++ source

files.
• To be able to use GCC to compile and execute C++

applications with single source files.
• To be able to use GCC to compile and execute C++

applications with multiple source files.
• To be able to debug C++ applications using the GDB

debugger.

DiveIntoLinux.fm Page 197 Tuesday, September 17, 2002 11:44 AM

198 GNU Compiler Collection (GCC) Chapter 5

5.1 Introduction
Welcome to the GNU Compiler Collection. In this chapter you will learn how to create,
compile and execute C++ programs using the C++ development tool from GNU—GCC.
When you complete this chapter, you will be able to use GCC to run applications. This
guide is suitable for use as a companion text in a first year university C++ programming
course sequence.

This guide does not teach C++; rather, this guide is intended to be used as a companion
to our textbook C++ How To Program, Fourth Edition or any other ANSI/ISO C++ text-
book. Many of our readers have asked us to provide a supplement that would introduce the
fundamental command line concepts using GCC and a basic overview of how to use the
GNU debugger. Our readers asked us to use the same “live-code” approach with outputs
that we employ in all our How to Program Series textbooks.

Before proceeding with this chapter, you should be familiar with the topics in Chapter
1, “Introduction to Computers and C++ Programming”, Chapter 2, "Control Structures",
Chapter 3, "Functions" and Chapter 6, "Classes and Data Abstraction" of C++ How to Pro-
gram, Fourth Edition. We hope you enjoy learning about the GCC command line compiler
with this guide.

5.2 Creating a C++ program
Before creating a C++ program, create a directory to store your files. We created a

directory named /Welcome, you of course can choose a different name.
You are now ready to create a program. Open a text editor and type in a program, such

as the following: [Note: We have include line numbers to improve readability of our
example, however they are not part of the program and should not be included.]

Outline

5.1 Introduction
5.2 Creating a C++ program
5.3 GNU Compiler Collection (GCC)

5.3.1 Compiling and Executing a Program with GCC
5.3.2 Compiling programs with Multiple Source Files

5.4 The STLPort Library
5.5 Using the GDB Debugger

5.5.1 Debugging an Application

1 // Welcome.cpp
2
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;

Fig. 5.1 Code for Welcome.cpp

DiveIntoLinux.fm Page 198 Tuesday, September 17, 2002 11:44 AM

To make your programs easier to read, adhere to the spacing conventions described in
C++ How To Program, Fourth Edition.

Save the file with a .cpp extension, which signifies to the compiler that the file is a
C++ file. In our example, we named the file Welcome.cpp.

5.3 GNU Compiler Collection (GCC)
GCC is a command line based compiler. It can be used to compile and execute C, C++ and
Fortran code. Although many Linux installations include a version of GCC by default, the
latest version is available from gcc.gnu.org/. There you will find links to download
GCC and information on how to compile and install. To access the help menu, enter g++
--help into the command prompt. This displays a list of help topics and information
about flags that can be raised to the compiler. This help is useful for basic questions and
command-line syntax.

5.3.1 Compiling and Executing a Program with GCC

1. In a terminal, use the cd command to traverse the directory structure and get to
the right folder (/Welcome). The steps can be done individually as shown in
Figure 5.2 below. The ls command displays the contents of a folder.

2. Once in the appropriate folder, use the GCC compiler to compile the program. To
do this, enter g++ FileName.cpp -o OutputFileName.out. The g++
command signifies that the C++ compiler should be used instead of the C compil-
er. FileName is the name of the .cpp file that is to be compiled. The -o flag spec-

7
8 int main()
9 {

10 cout << "Welcome to C++!" << endl;
11
12 return 0; // indicates successful termination
13
14 } // end main

Fig. 5.2 Changing to the correct directory.

Fig. 5.1 Code for Welcome.cpp

DiveIntoLinux.fm Page 199 Tuesday, September 17, 2002 11:44 AM

200 GNU Compiler Collection (GCC) Chapter 5

ifies that the output file should not receive the default name and the
OutputFileName is what the .out file will be called. If the -o flag is not raised,
the output file is named a.out. The command used to compile Welcome.cpp
is g++ Welcome.cpp -o Welcome.out -ansi. Raise the -ansi flag to
conform to ANSI/ISO standards.

3. GCC returns the user to the prompt if there are no syntax errors. It might appear
as if nothing has changed, but use the ls command to reveal the Welcome.out
file. To execute this program, enter ./Welcome.out. The program executes
and displays the Welcome to C++! output.

5.3.2 Compiling programs with Multiple Source Files
More complex programs often consist of multiple C++ source files. We introduce this

concept, called multiple source files, in chapter 6 of C++ How to Program, Fourth Edition.
This section explains how to compile a program with multiple source files using the GCC
compiler

Compiling a program, which has two or more source files, can be accomplished two
ways. The first method requires listing all the files on the command line. The second
method uses the wild-card character(*). Using the wild-card character followed by .cpp

Fig. 5.3 Compiling Welcome.cpp.

Fig. 5.4 Executing Welcome.exe.

DiveIntoLinux.fm Page 200 Tuesday, September 17, 2002 11:44 AM

will give you access to all the files with the .cpp extension in the current directory. For
example, typing ls *.cpp at the command prompt will list all files with the .cpp exten-
sion in the current directory. Both methods of compiling multiple files will be demonstrated
using Hello.cpp (Fig. 5.5) and Welcome2.cpp (Fig. 5.6).

For this example the files are placed in the /CppFiles directory. Use the cd com-
mand to get into the folder containing the source files.

To compile the program by listing the files on the command line, type:
g++ Hello.cpp Welcome2.cpp -o Welcome2.out -ansi

To compile the program using the wild-card character, type:
g++ *.cpp -o Welcome2.out -ansi

1 // Hello.cpp
2
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // print text to the output stream
9 void myFunction()

10 {
11 cout << "Hello from Hello.cpp!" << endl;
12
13 } // end function myFunction

Fig. 5.5 Code for Hello.cpp

1 // Welcome2.cpp
2
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 void myFunction(); // function prototype
9

10 int main()
11 {
12 cout << "Welcome to C++!" << endl;
13 myFunction(); // call function myFunction
14
15 return 0; // indicates successful termination
16
17 } // end main

Fig. 5.6 Code for Welcome2.cpp

DiveIntoLinux.fm Page 201 Tuesday, September 17, 2002 11:44 AM

Figure 5.7 demonstrates both methods of compiling mutliple source files, each cre-
ating an executable file with the name Welcome2.out. As with compilation of programs
with a single source file, if the -o flag is not raised, the executable file will be name
a.out.

5.4 The STLPort Library
GCC is an open source application. For this reason its standard library is not fully confor-
mant to ANSI/ISO standards. As GCC moves towards a fully-conformant standard library,
a free library provided by STLPort is available as a replacement and offers a standard com-
pliant I/O streams library. This library can be downloaded from www.STLport.org. En-
ter the Download section, and save the file named STLport-4.5.3.tar.gz. Extract
it using the command tar -zxvf STLport-4.5.3.tar.gz.

1. From the command line, switch to the STLPort directory. By default, the com-
mand is cd ~/STLport-4.5.3. The makefiles are located within the src di-
rectory; enter this directory using cd src.

2. The makefiles are accessible from the src directory. Enter the command make -
f gcc-linux.mak to begin compiling the libraries.

3. When completed, enter make -f gcc-linux.mak install to begin the
installation of the new library.

4. To export the library into the local path, enter the following command into the
command line: export LD_LIBRARY_PATH=/usr/local/lib

5. The new library is now installed. To test it, compile a program with the command
g++ -I/usr/local/include/stlport File.cpp -L/usr/local/

Fig. 5.7 Compiling multiple C++ source files.

DiveIntoLinux.fm Page 202 Tuesday, September 17, 2002 11:44 AM

203

lib -lstlport_gcc -pthread -o ExecutableFile. File is the C++
source file and ExecutableFile is the compiled program.

5.5 Using the GDB Debugger
GNU provides the GDB debugger to help programmers find run-time logic errors in pro-
grams that compile and link successfully but do not produce expected results. The debugger
lets the programmer view the executing program and its data as the program runs either one
step at a time or at full speed. The program stops on a selected line of code or upon a fatal
run-time error. When the programmer does not understand how incorrect results are pro-
duced by a program, running the program one statement at a time and monitoring the inter-
mediate results can help the programmer isolate the cause of error. The programmer can
correct the code.

GDB can be used in two ways. One way is using the console window and the other is
using GDB under emacs (i.e., a text editor that is available in most Linux machines), which
gives the programmer the opportunity to view and edit the source code while debugging the
program. Because emacs provides the programmer a much easier and cleaner user interface
than the console window, we use it to demonstrate how to debug applications with the GDB
debugger.

To use the debugger under emacs, compile the program with the -g flag. The -g flag
generates debugging symbols that the debugger can use to examine and manipulate data
while the program is executing. After compiling the program, open the source code and set
one or more breakpoints. A breakpoint is a marker set at a specified line of code that causes
the debugger to suspend execution of the program upon reaching that line of code. Break-
points help the programmer verify that a program is executing correctly. When a breakpoint
is set, emacs displays a confirmation (i.e., break Debug.cpp:28) on the bottom of the
window that the breakpoint has been set. To add breakpoints, use the break command or
the shortcut Control–x followed by Space. The continue command continues the execu-
tion of the program after a breakpoint. Shortcuts for the most used commands are displayed
under the GUD menu.

Often, certain variables are monitored by the programmer during the debugging pro-
cess- a process known as setting a watch. The watch command allows the programmer
to monitor variables as their values change. The debugger buffer displays the old and the
new values, whenever the variable value is changed. Variable values can also be modified
during the debugging process.

The step command executes program statements, including code in functions that are
called, allowing the programmer to confirm the proper execution of the functions, line-by-
line. The next command executes the next executable line of code and advances to the fol-
lowing executable line in the program. If the line of code contains a function call, the func-
tion is executed in its entirety as one step. This allows the user to execute the program one
line at a time and examine the execution of the program without seeing the details of every
function that is called.

5.5.1 Debugging an Application
This section guides the user through the debugging process using the GDB debugger. The
sample program, Debug.cpp (Fig. 5.8), is provided to guide you through the process of

DiveIntoLinux.fm Page 203 Tuesday, September 17, 2002 11:44 AM

204 GNU Compiler Collection (GCC) Chapter 5

debugging a simple C++ application. This application obtains a number from the user and
counts all the numbers from one up to the number entered.

1. The first step is to compile the program with the -g flag. This allows the debugger
to show the code for the program as opposed to the memory locations. This is done
by typing g++ Debug.cpp -g in the terminal window. Then, to open the source
file using emacs, type emacs Debug.cpp. Once the source file is opened, Select
Tools > Debugger (GUD) ... to run GDB under emacs. Type a.out in the
minibuffer window, located on the bottom of the window, and press Enter. There
are now two buffer windows open. One is the source code buffer and the other is

1 // Debug.cpp
2
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 // function return number entered by user

10 int getNumber()
11 {
12 int number;
13
14 cout << "Enter an integer: ";
15 cin >> number;
16
17 return number;
18
19 } // end function getNumber
20
21 // funtion main begins program execution
22 int main()
23 {
24 // call function getNumber
25 // store result in int variable number
26 int number = getNumber();
27
28 if (number <= 0)
29 return 0;
30
31 else
32 for (int i = 1; i <= number; i++)
33 cout << i << endl; // print from 1 to the number
34
35 return 0; // indicate that program ended successfully
36
37 } // end main

Fig. 5.8 Code for Debug.cpp

DiveIntoLinux.fm Page 204 Tuesday, September 17, 2002 11:44 AM

the debugger buffer. To switch between them select Buffers from the menu and
then select the buffer desired.

2. The next step is to add a breakpoint. In the source code buffer window, click on
the line where the breakpoint is to be located and press Control-x followed by
Space, or enter the command break line number in the debugger buffer. Add a
breakpoint to line 26, which is the first executable line inside the main function.

Fig. 5.9 Using the GDB debugger in emacs.

DiveIntoLinux.fm Page 205 Tuesday, September 17, 2002 11:44 AM

206 GNU Compiler Collection (GCC) Chapter 5

3. Type run in the debugger buffer and press Enter. The program starts execution
and suspends on line 26. The emacs window splits up in two and you will be able
to see the debugger buffer and the source code buffer at the same time. Once the
execution breaks, the prompt goes back to the debugger buffer and you can enter
other commands. To set a watch, enter watch variable name and press Enter. No-
tice that watches can only be set to variables that have been initialized already. For

Fig. 5.10 Setting a breakpoint.

DiveIntoLinux.fm Page 206 Tuesday, September 17, 2002 11:44 AM

207

example, a watch can only be set to variable i, when the debugger reaches line 32.
Notice that all watches are deleted when the program execution terminates.

4. Enter next and enter 5 when the program prompts the user to enter a number.
Notice that function getNumber has been called on line 26 and will be entirely

Fig. 5.11 Begin debugging Debug.cpp.

DiveIntoLinux.fm Page 207 Tuesday, September 17, 2002 11:44 AM

executed without any breaks. Entering step would have caused the program to
step into the function call of getNumber.

5. Execution suspends on line 28. Enter next and the debugger reaches line 32. Add
a watch for the variable i. This watch can only be added when within the scope
of i, meaning inside the for loop. Every time the value of i changes, the debug-

Fig. 5.12 Using the next command.

DiveIntoLinux.fm Page 208 Tuesday, September 17, 2002 11:44 AM

ger displays the old and the new values of the variable. Notice that the output is
also displayed in the debugger buffer.

6. Enter continue until the debugger iterates through the for loop and program
execution terminates.

7. Perform the debugging session once again and experiment with the different op-
tions that are available.

Fig. 5.13 Setting a watch for variable i.

DiveIntoLinux.fm Page 209 Tuesday, September 17, 2002 11:44 AM

