
1

1

C programming in 
Linux
CS 342 – Operating Systems

Spring 2004
Ibrahim Korpeoglu
Bilkent University

2© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Editing and Compiling
Makefile
Debugging
Revision control - RCS



2

3© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Editing

There are various editors
emacs
vi
kwrite
pico
joe
….

4© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Compiling

Use gcc
We can compile at the command line
gcc may have various options

These options are important to know: 
-o (with this we can specify the name of the executable file)
-g (force the compiler to produce debugging info in the 
executable so that we can debug the executable with a 
debugger like gdb or xxgdb)
-Wall (for the compiler to output all the warnings. It is 
important to remove all the warnings as well. You should 
compile your programs always with this option. )



3

5© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Compiling - debugging
In order to have the compiler generate debugging instructions into our 
executable file, we have to invoke the compiler with 

–g option
gcc –g bstsort.c

If we have a segmentation fault while running our program, the memory 
state and state of CPU registers are dumped into a file called “core…” in our 
directory, provided that the limit of the core file-size is not zero. 

You can learn the limits by “ulimit –a” command
You can set the limit of core file size with “ulimit –c <limit>”, for example 
“ulimit –c 10000000” will set the limit to 10 million bytes. In this case the 
core file that is created when a segmentation fault happens can not be 
bigger than 10 million bytes. 

6© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Compiling - debugging
We can use the core file to find out where we got a segmentation
fault (at which line of our .c code)

For this, we can use the gdb debugger. 

Just type: 
gdb <programname> <corefilename>

For example: gdb bstsort core
or     gdb bstsort core.9657 

(here 9657 is the process ID number of the process that 
caused the core file to be created upon segmentation fault)

It will show you the line where the segmentation fault has occurred. 
Try also with “list” command of gdb at the command prompt of the gdb. 
You get the gdb command prompt when you start gdb. 



4

7© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Compiling Example: 

bst.c

compiler (gcc)

bst

gcc –o bst –g –Wall bst.c

8© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Compiling with Makefile

We can use the “make” utility to compile 
our programs. 
Very useful for large projects (Consisting 
of 10s, 100s, 1000s of files)
The make utility reads the commands 
(rules) to compile a program from a file 
called “Makefile” that is usually located in 
the same directory as the source files.  



5

9© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Makefile Example

At command prompt, we just 
type “make” and invoke the 
make utility in this way. 

The make utility opens and 
reads the file called Makefile
located in the same directory. 

Note that we use of TABs
instead of spaces for indenting 
the lines in a Makefile. 

homework: bst.c
gcc -g -o bst bst.c

clean:
rm -fr *~ a.out bst

<TAB>

<TAB>

Makefile

10© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

RCS

RCS: revision control system
Can be used to keep track of versions of your 
program(s). 
You can store a version of your C code in RCS 
system and then later retrieve it when you want 
to do some modifications. 
You can store as  many revisions as you wish. 



6

11© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Some Important RCS commands

“ci –l filename.c”
Stores the revision in the RCS database
A copy of the file stays in the directory, so that the 
user can continue working on the file. 

“co –l filename.c”
Retrieves the file from the database and locks it, so 
that the retrieved file can edited and modified. 

rlog
List all the revisions

ident

12© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Some important RCS commands

Ident
Give information about the files, such as author, 
revision number, etc. 
For this information to appear, the file should have the 
following string somewhere at the top:
/* $Id$ */
When you check in the file, this string is replaced with 
the revision number and other information. 
When you ckeck out the file, and look to the inside of 
the file, you will see the “$Id$” replaced with the 
revision number and other information about the file. 



7

13© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

RCS

You can learn more about RCS by typing
“man rcsintro”
There are other related RCS commands like: 

rcs
rcsmerge
rcsdiff (show the different between two revisions). 
You have to specify the revision number. Read the 
mane page for “rcsdiff”.  

14© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Compiling multiple files 

compiler

linker

C 
preprocessor

x1.c

x1.o

compiler

C 
preprocessor

x2.c

x1.o

compiler

C 
preprocessor

xN.c

x1.o

1 2 3

executable file

…

machine code

.h .h .h.h

gcc

gcc
ld



8

15© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Object file
-c option of gcc causes only 
the object file to be produced. 

Object file has the machine 
code. Besides some other 
information,  of the program. 
The machine code is 
translated from the C source 
file by the compiler.

gcc –c x.c
gcc x.o –o x

x.c

x.o
object file

gcc –o x x.o

gcc –c x.c

x Executable file

16© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Analysis of our homework program
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct node {
struct node *left;
struct node *right;
int count;
char        *word;

};



9

17© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

void
insert_bst (struct node *r, struct node *n)
{

int ret;

ret = strcmp(n->word, r->word);
if (ret == 0)

r->count++;
else if (ret < 0) {

if (r->left == NULL)
r->left = n;

else
insert_bst (r->left, n);

}
else if (ret > 0) {

if (r->right == NULL)
r->right = n;

else
insert_bst (r->right, n);

}
}

void print_bst(struct node *r)
{

int i;

if (r != NULL) {
print_bst (r->left);
for (i=0; i < r->count; ++i)

printf("%s\n", r->word);
print_bst (r->right);

}
}

void free_bst (struct node *r)
{

if (r != NULL) {
free_bst (r->left);
free_bst (r->right);
free(r->word);
free(r);

}
}

Point13

Point14

Point15

Point16

18© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

int
main(int argc, char *argv[])
{

FILE * fp;
struct node *root;
struct node *newnode;
char   buffer[1024];

if (argc != 2) {
printf("wrong number of arguments\n");
exit(1);

}

if ( (fp = fopen(argv[1], "r")) == NULL) {
printf ("can not open the file \n");
exit(1);

}

root = NULL; /* initialize the root pointer */

Point 1

Point 2

Point 0



10

19© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

if (fscanf(fp, "%s", buffer) == 1) {
newnode = (struct node *) malloc 

(sizeof(struct node));
newnode->left = NULL;
newnode->right= NULL;
newnode->count = 1;
newnode->word = (char *) malloc 

(strlen(buffer) + 1);
strcpy(newnode->word, buffer);

root = newnode;
}

while ( fscanf(fp, "%s", buffer) == 1 ) {
newnode = (struct node *) malloc 

(sizeof(struct node));
newnode->left = NULL;
newnode->right= NULL;
newnode->count = 1;
newnode->word = (char *) malloc 

(strlen(buffer) + 1);

strcpy(newnode->word, buffer);

insert_bst(root, newnode);
}

print_bst(root);

free_bst(root);
root = NULL;
exit(0);

} /* end of main */

Point3
Point4

Point5

Point6
Point7

Point8

Point9

Point10

Point11

Point12
Point17

20© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

General memory layout of a 
program

STACK

STATIC 
STORAGE

INSTRUCTIONS
(TEXT)

DYNAMIC 
STORAGE Heap: holds dynamically

allocated storage

Stack Segment: holds function
parameters and local variables
defined inside the functions. 

Data Segment: holds global 
variables and static variables

address space of 
the program



11

21© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

Running our program

Assume our program is run as: 
bstsort x.txt

Assume the input file x.txt has the 
following words in it: 

ali
veli
…..

22© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 0: Stack of the process bstsort

2

x . t x t

argc

b s t s o r t \0

\0

4 bytes
(char *)

4 bytes

Type of the 
stored value

Assume we have 
a 32-bit machine

NULL

argv[0]
argv[1]
argv[2]

argv
(char **)

(int) 4 bytes



12

23© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

When our program is run as the following: 
bstsort x.txt

At point 0: our program will have two parameters argc, 
and argv filled up with values that we were obtained from 
the command shell while starting up the program.
These variables (argc and argv) will stay in the bottom of 
the stack until main() returns, i.e. until the program 
terminates. We will not show them in later slides, but you 
should just know that they will be there during the 
lifetime of the main function. We do not show them just 
because of space restrictions on our slides. 

24© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 1: state of various storage segments in 
memory (i.e. state of segments of the program)

Since we did 
not define
any global

variables, this
space is empty

Static Storage Stack Dynamic Storage

fp

root

newnode

0 1023
buffer

4 bytesbottom



13

25© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 2:
Static Storage Stack Dynamic Storage

fp

NULLroot

newnode

0 1023
buffer

4 bytes

26© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 3:
Static Storage Stack Dynamic Storage

fp

NULLroot

newnode

a l i \0
0 1023

buffer

4 bytes

NULL character 
(ascii value = 0)



14

27© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 4:
Static Storage Stack Dynamic Storage

fp

NULLroot

newnode

0 1023
buffer

4 bytes

left
right
count
word

a l i \0

4 bytes

A total of 
16 bytes
allocated

28© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 5:
Static Storage Stack Dynamic Storage

fp

NULLroot

newnode

0 1023
buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0



15

29© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 6:
Static Storage Stack Dynamic Storage

fp

NULLroot

newnode

0 1023
buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

30© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 7:
Static Storage Stack Dynamic Storage

fp

NULLroot

newnode

0 1023
buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

a l i \0



16

31© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 8:
Static Storage Stack Dynamic Storage

fp

root

newnode

0 1023
buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

a l i \0

32© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 9:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0



17

33© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 10:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

left
right
count
word

34© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 11:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

1
NULL
NULL left

right
count
word



18

35© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 12:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

1
NULL
NULL left

right
count
word

v e l i \0 

(HEAP)

36© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 13:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

1
NULL
NULL left

right
count
word

v e l i \0 

(HEAP)

r
n



19

37© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 14:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

1
NULL
NULL left

right
count
word

v e l i \0 

(HEAP)

r
n n

ret

38© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 15:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1
NULL
NULL left

right
count
word

a l i \0

1
NULL
NULL left

right
count
word

v e l i \0 

(HEAP)

r
n

1

n

ret



20

39© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 16:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1

NULL left
right
count
word

a l i \0

1
NULL
NULL left

right
count
word

v e l i \0 

(HEAP)

r
n

1

n

ret

40© İbrahim Körpeoğlu, 2005

CS 342 – Operating Systems, Spring 2005 Bilkent University

At point 16:
Static Storage Stack Dynamic Storage

fp

root

newnode

v e l i \0
0 1023

buffer

4 bytes

1

NULL left
right
count
word

a l i \0

1
NULL
NULL left

right
count
word

v e l i \0 

(HEAP)


