
Case Study
CS 201

This slide set covers pointers and
arrays in C++. You should read
Chapters 9 and 10 from your Deitel
& Deitel book.

IntArray class
● Let’s implement an IntArray class to represent an array of integers

● This class will have the following features:
○ The array knows its size
○ Array items do not have garbage values
○ It always handles allocation and deallocation (such that as a user, you do not need to worry

about explicitly using the new and delete operators)
○ It always deep copies the array items when an array’s copy is needed or the assignment

operator is applied on the array
○ The subscript operator has array bound checking for accessing the array items
○ It uses cin >> and cout << for directly inputting and outputting the array items

2

IntArray definition
class IntArray {
public:
 // If a class has dynamically allocated data members, it is highly recommended to
 // re-implement the destructor and copy constructor, and overload the assignment
 // operator (instead of using the ones provided by the compiler)

 IntArray(const int = 0); // constructor with a default argument
 IntArray(const IntArray&); // copy constructor
 ~IntArray(); // destructor
 IntArray& operator=(const IntArray&); // overloaded assignment operator
 int& operator[](const int); // overloaded subscript operator

private:
 int size; // number of array items
 int* data; // dynamically allocated array

// IntArray class declares the following two functions as its friend such that they
// can access its private data members and call its private member functions
friend istream& operator>>(istream& , IntArray&);
friend ostream& operator<<(ostream& , const IntArray&);
};

IntArray implementation (constructor)
● Constructors are called when an

object is constructed (either by
declaration or using the new operator)

○ The storage class of an object determines
when it is constructed

● It is possible to implement multiple
constructors as long as their
signatures are different

○ The compiler selects which one to use
based on its argument(s)

○ If an object is initialized with another object
of the same type at its construction, the
compiler calls the copy constructor

// Constructor with a single integer
// parameter (this parameter has a
// default value set in the class
// definition such that it also serves
// as a default constructor)
IntArray::IntArray(const int aSize) {
 if (aSize <= 0) {
 size = 0;
 data = NULL;
 }
 else {
 size = aSize;
 data = new int[size];
 for (int i = 0; i < size; i++)
 data[i] = 0;
 }
}

IntArray implementation (copy constructor)
● Copy constructor is called when

○ An object is initialized with another of the
same type at its declaration (construction)
IntArray prev;
IntArray current(prev);
IntArray next = current;

○ An object is passed by value as an
argument to a function (pass-by-value)

○ An object is returned by value from a
function (however, C++ Standard allows
compilers to optimize this)

● If not provided explicitly, the compiler
provides a default copy constructor
performing memberwise shallow copy

○ It does not deep copy the data members

// This copy constructor deep copies the
// array items as opposed to default copy
// constructor provided by the compiler
IntArray::IntArray(const IntArray& arr)

: size(arr.size) {
 if (size > 0) {
 data = new int [size];
 for (int i = 0; i < size; i++)
 data[i] = arr.data[i];
 }
 else
 data = NULL;
}

It must receive its argument by reference (not by
value). Otherwise, it results in infinite recursion.

Its argument should also be const to allow a
constant object to be copied and to be used only as an
rvalue inside the function.

IntArray implementation (destructor)
● Destructor is a special member

function that is called implicitly when
an object is destructed (either when
its lifetime ends or when the delete
operator is used)

○ Destructor calls are usually made in the
reverse order of their corresponding
constructor calls

○ However, the storage class of objects may
alter this order

● Each class should have only one
destructor (no overloading is allowed)

● If not provided explicitly, the compiler
creates an “empty” destructor

IntArray::~IntArray() {
 if (data)
 delete [] data;
}

// Constructor call for a single
// dynamically created object
IntArray* a1 = new IntArray(400);

// Default constructor call for every
// object in the array
IntArray* a2 = new IntArray[5];

// Destructor call for the single object
delete a1; //

// Every object in the array receives a
// destructor call. If "delete a2;" is
// used, only the first object receives
// a destructor call
delete [] a2;

Operator overloading
● For every class, the following operators are provided by the compiler

○ Assignment operator (=) → performs memberwise assignment between two objects
○ Address operator (&) → returns the address of an object
○ Comma operator (,) → first evaluates its first (left) operand, then evaluates its second (right)

operand and returns its value

● Although they are provided by the compiler, these operators can also be
overloaded by the programmer

● Other operators can also be overloaded except . :: ?: sizeof

● Operator overloading should be done for a class individually
○ By defining a member function (in that class) for this operator
○ Where the name of this function should be operator <operator-to-be-overloaded>

7

IntArray implementation (assignment operator)
● It is called when the left operand is an object

● If not provided explicitly, the compiler provides a default assignment operator
that assigns each data member of the right object to the same data member
of the left object IntArray& IntArray::operator=(const IntArray& right) {

 if (&right != this) { // to avoid self-assignment
 if (size != right.size) {
 if (size > 0)
 delete [] data;
 size = right.size;
 if (size > 0)
 data = new int[size];
 else
 data = NULL;
 }
 for (int i = 0; i < size; i++)
 data[i] = right.data[i];
 }
 return *this; // to allow cascading
}

● However, this default
assignment operator
performs shallow copy
for the memberwise
assignments

One can also define additional
assignment operators where the
right operand is of another data
type

this pointer
● Every object has access to its own address

through a pointer called this
○ The this pointer is not a part of the object
○ The compiler passes it as an implicit argument to

a non-static member function call of this object

● An object uses its this pointer
○ Implicitly when accessing its members directly
○ Explicitly when using the this keyword

● The type of the this pointer depends on
the object’s type and whether the executing
member function is declared as const

9

static member functions
● A member function can be

declared as static if it does
not access any non-static
data member or call any
non-static member function of
its class

● static data members of a class
exist in memory and its static
member functions can be called
even when there exist no object of
this class in memory

● A static member function
does not have the this pointer

IntArray implementation (subscript operator)
● Other operators can also be

overloaded

● This subscript operator facilitates
array bound checking for accessing
the array items

int& IntArray::operator[](const int ind){
 if (ind < 0 || ind >= size)
 throw out_of_range("Invalid index");
 else
 return data[ind];
}

The return type of this function should be of a
reference type since its returned value can be
used both as an lvalue and as an rvalue

IntArray arr(5);
cout << arr[3]; // used as an rvalue
arr[3] = 10; // used as an lvalue

// You can throw and catch exceptions also
// in C++, as in the following example
#include <exception>
int main(){
 IntArray arr(100);
 try {
 arr[130] = 20;
 }
 catch (const exception& e){
 cout << e.what() << endl;
 }
 return 0;
}

IntArray implementation (cin >> and cout <<)
● These are

input-output methods
defined for istream
and ostream classes

● They are
implemented for
directly inputting and
outputting the array
items

istream& operator>>(istream& in, IntArray& arr) {
 cout << "Enter " << arr.size << " integers: ";
 for (int i = 0; i < arr.size; i++)
 in >> arr.data[i];
 return in;
}
ostream& operator<<(ostream& out, const IntArray& arr) {
 for (int i = 0; i < arr.size; i++)
 out << arr.data[i] << "\t";
 out << endl;
 return out;
}

A class may declare other classes or functions as its friend such that
they can access its private data members and member functions

class IntArray {
// ...
friend istream& operator>>(istream& , IntArray&);
friend ostream& operator<<(ostream& , const IntArray&);
};

Example: Given the following Test
class, what are the outputs of the
following programs?

These examples are for you to better
understand when the constructor,
copy constructor, destructor, and
assignment operator are called.

class Test {
public:
 Test(int i = 0){
 id = i;
 cout << "Constructor " << id << endl;
 }
 ~Test(){
 cout << "Destructor " << id << endl;
 }
 Test(const Test& o){
 id = o.id;
 cout << "Copy const " << id << endl;
 }
 Test& operator=(const Test& right){
 id = right.id;
 cout << "Assignment " << id << endl;
 return *this;
 }
 int id;
};

Example: Given the Test class
above, what are the outputs of this
program?

Test t1(10);
Test t2(20);

void foo(bool flag){
 Test t3(30);
 static Test t4(40);

 if (flag){
 Test t5(50);
 Test t6(60);
 }
 Test t7(70);
}
int main() {

 cout << "checkpoint 1---" << endl;
 Test t8(80);

 cout << "checkpoint 2---" << endl;
 foo(false);

 cout << "checkpoint 3---" << endl;
 foo(true);

 cout << "checkpoint 4---" << endl;
 return 0;
}

Do not forget that the constructor,
copy constructor, destructor, and
assignment operator are called
only for an object. For example,
they are not called for an object
pointer or a class data member
(unless this data member is an
object of another class).

int main() {

 cout << "checkpoint 1---" << endl;
 Test *b1;

 cout << "checkpoint 2---" << endl;
 b1 = new Test (100);
 delete b1;

 cout << "checkpoint 3---" << endl;
 b1 = new Test [2];
 b1[0].id = 200;
 b1[1].id = 300;
 delete []b1;

 cout << "checkpoint 4---" << endl;
 b1 = new Test [2];
 b1[0].id = 400;
 b1[1].id = 500;
 delete b1;

 cout << "checkpoint 5---" << endl;
 return 0;
}

Example: Given the Test class
above, what are the outputs of this
program?

Do not forget that the constructor,
copy constructor, destructor, and
assignment operator are called
only for an object. For example,
they are not called for an object
pointer or a class data member
(unless this data member is an
object of another class).

void bar (Test a, Test* b, Test& c) {
 // ...
}
int main() {

 cout << "checkpoint 1---" << endl;
 Test t1(11);
 Test& t2 = t1;
 Test t3 = t1;
 t3.id = 33;

 cout << "checkpoint 2---" << endl;
 bar(t1, &t2, t3);

 cout << "checkpoint 3---" << endl;
 Test* t4;
 Test* t5;
 t4 = &t1;
 t5 = t4;
 *t4 = t1;

 cout << "checkpoint 4---" << endl;
 bar(*t5, &t1, *t4);

 cout << "checkpoint 5---" << endl;
 return 0;
}

Example: Given the Test class
above, what are the outputs of this
program?

Do not forget that the constructor,
copy constructor, destructor, and
assignment operator are called
only for an object. For example,
they are not called for an object
pointer or a class data member
(unless this data member is an
object of another class).

