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Image classification
Image (scene) classification is a fundamental problem in 
image understanding.
Automatic techniques for associating scenes with semantic 
labels have a high potential for improving the performance 
of other computer vision applications such as

browsing (natural grouping of images instead of clusters based 
only on low-level features),
retrieval (filtering images in archives based on content), and
object recognition (the probability of an unknown object/region 
that exhibits several local features of a ship actually being a ship 
can be increased if the scene context is known to be a coast with 
high confidence but can be decreased if no water related context is 
dominant in that scene).
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Image classification

The image classification problem has two critical 
components: representing images and learning
models for semantic categories using these 
representations.
Early work used low-level global features 
extracted from the whole image or from a fixed 
spatial layout.
More recent approaches exploit local statistics in 
images using patches extracted by interest point 
detectors.
Other configurations that use regions and their 
spatial relationships are also proposed.
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Hierarchical image classification
Images

Others (Face/close-up) Indoor Outdoor

City Landscape

Others Sunset Mountain/forest

Mountain Forest

Others (Face/close-up)

Hierarchy of 11 scene categories (Vailaya et al., “Image classification for 
content-based indexing,” IEEE Trans. Image Processing, 2001).
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Hierarchical image classification

Image representation:
Mean and std. dev. of LUV values in 10x10 blocks for 
indoor/outdoor classification.
Edge direction histograms for city/landscape 
classification.
Histograms of HSV and LUV values for 
sunset/mountain/forest classification.

Classification:
Class-conditional density estimation using vector 
quantization.
Bayesian classification.
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Hierarchical image classification
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Hierarchical image classification
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Image classification using bag-of-words

Caltech data set: 13 natural scene categories.

IDIAP data set (left to right): mountain, 
forest, indoor, city-panorama, city-street.
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Image classification using bag-of-words

Flowchart from Fei-Fei Li, Pietro Perona, “A Bayesian hierarchical model for 
learning natural scene categories,” IEEE CVPR, 2005.
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Image classification using bag-of-words

A codebook obtained from 650 training examples from 13 categories.
Image patches are detected by a sliding grid and random sampling of scales.
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Image classification using bag-of-words
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Image classification using bag-of-words

Probabilistic Latent Semantic Analysis (PLSA) is used to 
learn aspect models to capture co-occurrences of visterms
(visual terms).
Bag-of-visterms representation or the aspect parameters 
are given as input to Support Vector Machines for 
classification.

Flowchart from Quelhas et al., “A thousand words in a scene,” IEEE Trans. PAMI, 2007.
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Image classification using bag-of-words
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Image classification using bag-of-regions

D. Gökalp, S. Aksoy, “Scene classification using 
bag-of-regions representations,” IEEE CVPR, 
Beyond Patches Workshop, 2007.

Region segmentation
Region clustering region codebook
Above-below spatial relationships region pairs
Statistical region selection: identify region types that

are frequently found in a particular class of scenes but rarely 
exist in other classes, and
consistently occur together in the same class of scenes.

Bayesian scene classification using
bag of individual regions,
bag of region pairs.
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Image classification using bag-of-regions

Examples for region clusters.
Each row represents a different cluster.
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Image classification using bag-of-regions
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Image classification using bag-of-regions

Examples for correctly classified scenes. Examples for wrongly classified scenes.
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Image classification using factor graphs

Boutell et al., “Factor graphs for region-based whole-scene 
classification,” IEEE CVPR, Workshop on Semantic 
Learning Applications in Multimedia, 2006.



Li Fei-Fei, UIUC
Rob Fergus, MIT

Antonio Torralba, MIT

Recognizing and Learning Recognizing and Learning 
Object CategoriesObject Categories

ICCV 2005 Beijing, Short Course, Oct 15ICCV 2005 Beijing, Short Course, Oct 15
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AgendaAgenda

Introduction

Bag of words models

Part-based models

Discriminative methods

Segmentation and recognition

Conclusions
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perceptibleperceptible visionvision materialmaterial
thingthing
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How many object categories are there?

Biederman 1987
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So what does object recognition involve?
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Verification: is that a bus?
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Detection: are there cars?
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Identification: is that a picture of Mao?
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Object categorization

sky

building

flag

wallbanner

bus

cars

bus

face

street lamp
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Scene and context categorization
• outdoor
• city
• traffic
• …
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Challenges 1: view point variation

Michelangelo 1475-1564
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Challenges 2: illumination

slide credit: S. Ullman
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Challenges 3: occlusion

Magritte, 1957 
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Challenges 4: scale
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Challenges 5: deformation

Xu, Beihong 1943
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Challenges 6: background clutter

Klimt, 1913
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History: single object recognition
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Challenges 7: intra-class variation
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History: early object categorization



CS 484, Spring 2007 ©2007, Selim Aksoy 41



CS 484, Spring 2007 ©2007, Selim Aksoy 42

OBJECTS

ANIMALS INANIMATEPLANTS

MAN-MADENATURALVERTEBRATE…..

MAMMALS BIRDS

GROUSEBOARTAPIR CAMERA
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Scenes, Objects, and Parts

Features

Parts

Objects

Scene

E. Sudderth, A. Torralba, W. Freeman, A. Willsky. ICCV 2005.
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Object categorization: Object categorization: 
the statistical viewpointthe statistical viewpoint
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Object categorization: Object categorization: 
the statistical viewpointthe statistical viewpoint
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zebranop
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zebranoimagep
zebraimagep

imagezebranop
imagezebrap

⋅=

posterior ratio likelihood ratio prior ratio

Discriminative methods model posterior

Generative methods model likelihood and prior
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Discriminative

Direct modeling of 

Zebra

Non-zebra

Decision
boundary
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)|(

imagezebranop
imagezebrap



CS 484, Spring 2007 ©2007, Selim Aksoy 48

Model                        and 

Generative
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Three main issuesThree main issues

Representation
How to represent an object category

Learning
How to form the classifier, given training data

Recognition
How the classifier is to be used on novel data
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Representation

Generative / discriminative / 
hybrid
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Representation

Generative / discriminative / 
hybrid
Appearance only or location 
and appearance
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Representation

Generative / discriminative / 
hybrid
Appearance only or location 
and appearance
Invariances

View point
Illumination
Occlusion
Scale
Deformation
Clutter
etc.
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Representation

Generative / discriminative / 
hybrid
Appearance only or location 
and appearance
invariances
Part-based or global w/sub-
window
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Representation

Generative / discriminative / 
hybrid
Appearance only or location 
and appearance
invariances
Parts or global w/sub-
window
Use set of features or each 
pixel in image
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Unclear how to model categories, so we learn 
what distinguishes them rather than manually 
specify the difference -- hence current interest 
in machine learning

Learning
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Unclear how to model categories, so we learn 
what distinguishes them rather than manually 
specify the difference -- hence current interest 
in machine learning)
Methods of training: generative vs. 
discriminative

Learning
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Unclear how to model categories, so we learn 
what distinguishes them rather than manually 
specify the difference -- hence current interest 
in machine learning)
What are you maximizing? Likelihood (Gen.) or 
performances on train/validation set (Disc.)
Level of supervision

Manual segmentation; bounding box; image 
labels; noisy labels

Learning

Contains a motorbike
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Unclear how to model categories, so we learn 
what distinguishes them rather than manually 
specify the difference -- hence current interest 
in machine learning)
What are you maximizing? Likelihood (Gen.) or 
performances on train/validation set (Disc.)
Level of supervision

Manual segmentation; bounding box; image 
labels; noisy labels

Batch/incremental (on category and image 
level; user-feedback ) 

Learning
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Unclear how to model categories, so we learn 
what distinguishes them rather than manually 
specify the difference -- hence current interest 
in machine learning)
What are you maximizing? Likelihood (Gen.) or 
performances on train/validation set (Disc.)
Level of supervision

Manual segmentation; bounding box; image 
labels; noisy labels

Batch/incremental (on category and image 
level; user-feedback ) 
Training images:

Issue of overfitting
Negative images for discriminative methods

Learning
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Unclear how to model categories, so we learn 
what distinguishes them rather than manually 
specify the difference -- hence current interest 
in machine learning)
What are you maximizing? Likelihood (Gen.) or 
performances on train/validation set (Disc.)
Level of supervision

Manual segmentation; bounding box; image 
labels; noisy labels

Batch/incremental (on category and image 
level; user-feedback ) 
Training images:

Issue of overfitting
Negative images for discriminative methods

Priors

Learning
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Scale / orientation range to search over 
Speed

Recognition



Object Class Recognition using 
Images of Abstract Regions

Yi Li, Jeff A. Bilmes, and Linda G. Shapiro
Department of Computer Science and Engineering

Department of Electrical Engineering
University of Washington
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Given: Some images and their corresponding descriptions

{trees, grass, cherry trees} {cheetah, trunk} {mountains, sky} {beach, sky, trees, water}

? ? ? ?

•••

To solve: What object classes are present in new images

•••

Problem Statement
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Abstract Regions

Original Images Color Regions Texture Regions Line Clusters
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Object Model Learning (Ideal)

sky
tree

water

boat

+

Sky

Tree

Water

Boat

region attributes → object

Water =

Sky =

Tree =

Boat =

Learned Models
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Our Scenario: Abstract Regions

{sky, building}

image

labels

region
attributes
from several
different
types of
regions

Multiple segmentations whose regions are not labeled;
a list of labels is provided for each training image.

various different
segmentations
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Object Model Learning

Assumptions
The feature distribution of each object within 
a region is a Gaussian;

Each image is a set of regions;
each region can be modeled as a mixture of 
multivariate Gaussian distributions.
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Model Initial Estimation
Estimate the initial model of an object using all the region 
features from all images that contain the object

Tree

Sky
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Final Model for “trees”

Final Model for “sky”

EM

Expectation-Maximization

Initial Model for “trees”

Initial Model for “sky”
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I1
O1
O2

O1
O3

I2 I3
O2
O3

Image & description

1. Initialization Step (Example)

W=0.5 W=0.5W=0.5 W=0.5

W=0.5

W=0.5

W=0.5

W=0.5

W=0.5 W=0.5W=0.5 W=0.5

)0(
1ON )0(

3ON)0(
2ON
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E-Step

M-Step

2. Iteration Step (Example)
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I2 I3
O2
O3
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Recognition

Test Image Color Regions

Tree

Sky

compare

Object Model
Database

To calculate p(tree | image)

))|(()|( a
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a
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=

p( tree|             )

p( tree|             )

p( tree|             )

p(tree | image) = f p( tree|             )
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Combining different abstract regions

Treat the different types of regions 
independently and combine at the time of 
classification.

Form intersections of the different types of 
regions, creating smaller regions that have 
both color and texture properties for 
classification.

∏=
a

a
I

a
I FopFop )|(}){|(
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Experiments (on 860 images)

18 keywords: mountains (30), orangutan (37), track
(40), tree trunk (43), football field (43), beach (45), 
prairie grass (53), cherry tree (53), snow (54), zebra 
(56), polar bear (56), lion (71), water (76), 
chimpanzee (79), cheetah (112), sky (259), grass
(272), tree (361).

A set of cross-validation experiments (80% as training 
set and the other 20% as test set)

The poorest results are on object classes “tree,”
“grass,” and “water,” each of which has a high 
variance; a single Gaussian model is insufficient.
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ROC Charts

Independent Treatment of
Color and Texture

Using Intersections of
Color and Texture Regions
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cheetah

Sample Results
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Sample Results (Cont.)

grass
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Sample Results (Cont.)

cherry tree
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Sample Results (Cont.)

lion
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Summary

Designed a set of abstract region features: color, 
texture, structure, . . .

Developed a new semi-supervised EM-like 
algorithm to recognize object classes in color 
photographic images of outdoor scenes; tested on 
860 images. 

Compared two different methods of combining
different types of abstract regions. The 
intersection method had a higher performance
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Groundtruth Data Set
UW Ground truth database (1224 images)
31 elementary object categories: river (30), beach (31), 
bridge (33), track (35), pole (38), football field (41), frozen lake
(42), lantern (42), husky stadium (44), hill (49), cherry tree (54), 
car (60), boat (67), stone (70), ground (81), flower (85), lake
(86), sidewalk (88), street (96), snow (98), cloud (119), rock
(122), house (175), bush (178), mountain (231), water (290), 
building (316), grass (322), people (344), tree (589), sky (659)
20 high-level concepts: Asian city , Australia, Barcelona, 
campus, Cannon Beach, Columbia Gorge, European city, 
Geneva, Green Lake, Greenland, Indonesia, indoor, Iran, Italy, 
Japan, park, San Juans, spring flowers, Swiss mountains, and 
Yellowstone.
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beach, sky, tree, water people, street, tree building, grass, people, 
sidewalk, sky, tree

flower, house, people, 
pole, sidewalk, sky

flower, grass, house, 
pole, sky, street, tree

building, flower, sky, 
tree, water

building, car, people, tree car, people, sky boat, house, water

building, bush, sky, 
tree, water

building

boat, rock, sky, 
tree, water
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Groundtruth Data Set: 
ROC Scores

94.4spring flowers87.0european city80.1house

100.0husky stadium94.0park86.7asian city79.7australia

99.8football field93.3geneva85.7sidewalk78.1lantern

99.6track92.9barcelona84.3indonesia76.8boat

99.2cannon beach92.9campus83.9water75.4cloud

98.7greenland92.9japan83.7yellowstone75.4building

97.0indoor92.8frozen lake83.3pole74.9grass

96.9cherry tree92.8lake82.9car74.7river

96.5sanjuans92.0snow82.7bridge74.3ground

95.7swiss moutains89.0beach82.2iran74.1sky

95.1italy88.3mountain81.1flower73.5rock

94.9green lake87.4hill81.0bush68.0people

94.5columbia gorge87.1stone80.8tree60.4street
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Groundtruth Data Set: 
Top Results

Asian city

Cannon beach

Italy

park
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Groundtruth Data Set: 
Top Results

sky

spring flowers

tree

water
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VACE Test Image Set (828 images and 10 object classes):
from Boeing, VIVID, and NGA videos
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Experiments: ROC Curves
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Objects detected in frames

forest(94.37) house(64.09)
car(46.5) dirt road(23.44) paved 
road(4.77) tree(2.29) airplane(1.47) 
runway(0.03) field(0.02) people(0) 

runway(99.98) field(98.66) car(96.24)
people(10.04) airplane(2.74) paved 
road(2.39) forest(0.82) house(0.48) dirt 
road(0.41) tree(0) 

car(94.3) dirt road(91.7) field(16.17)
tree(14.23) paved road(5.34) airplane(5.17) 
people(3.91) forest(0.53) house(0.47) 
runway(0.41) 

runway(99.98) car(99.84) field(99.27)
paved road(18.28) people(13.13) 
tree(8.71) airplane(7.94) forest(1.67) 
house(0.14) dirt road(0.08) 

runway(100) car(99.23) field(98.07) dirt 
road(92.1) house(85.24) tree(19.43) 
paved road(5.77) airplane(3.56) 
forest(2.85) people(0.07) 

car(97.92) forest(94.2) paved road(85) 
dirt road(72.94) tree(68.84) 
airplane(39.13) house(33.17) 
people(12.97) field(2.38) runway(0.04) 


