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Fourier theory

= Jean Baptiste Joseph Fourier had a crazy idea:

= Any periodic function can be written as a weighted sum
of sines and cosines of different frequencies (1807).

= Don't believe it?
» Neither did Lagrange, Laplace, Poisson, ...

= But it is truel
- Fourier series

= Even functions that are not periodic (but whose
area under the curve is finite) can be expressed
as the integral of sines and cosines multiplied by a
weighing function.
- Fourier transform
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Fourier theory

= The Fourier theory
shows how most real
functions can be
represented in terms
of a basis of sinusoids.

= The building block:
s Asin(wx + @)

= Add enough of them
to get any signal you
want.

f(target)=

f1 + f2+ f3...+ f+...

Adapted from Alexei Efros, CMU "
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Fourier transform

e The Fourier transform, F(u) of a single variable,
continuous function, f(x), is defined by

u / Jc —jQuUi dr.

e Given F'(u), we can obtain f(x) using the inverse
Fourier transform

f(x) = / F(u) e/*™ du.

0
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Fourier transform

e The discrete Fourier transform (DFT), F'(u), of a discrete function
of one variable, f(z), x =0,1,2,.... M — 1, is defined by

M —1
I .,
F(-u.) _ v Z ]L(I') e—‘}zﬂzm/ﬂ«f
o x=0

foru=0,1,2,...,M — 1.

e Given F'(u), we can obtain the original function back using the

inverse DFT
M—1

j(I) _ Z F(u) €j2’rru.;r./ﬂ«f
u=0

fora =0,1,2,..., M — 1.
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Fourier transform

e [hese formulas can be extended for functions of two
variables.

e Fourier transform:

i(:x:. i(x;. .
F(/ZL}’U) :/ / f(Tq’lj) e—jQ‘FT("u.:I?—i—"L’y) dr dy
—00 J —00

e Inverse Fourier transform:

(2, y) / / (u, v) /27T doy du.
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Fourier transform

e Discrete Fourier transform:

M—1N-1
—'QH U,J 1[+Il \
F(u,v) = A[NTTJCTU . [M+vy/N)
r=0 y=0
foru =0,1,2,..., M—-1,v=0,1,2,..., N — 1.
e Inverse discrete Fourier transform:
M—1N-1
T y S‘ TF “UL ’U €J2H (ux/M4vy/N)
u=0 =0
forx =0,1,2,..., M—-1, y=0,1,2,...,N — 1.
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Fourier transform

e ['(u,v) can also be expressed in polar coordinates as
F(u,v) = |F(u,v)| e/®?)
where

Fuw o) = (R{F @ o)} + 9Fw0)})

is called the magnitude or spectrum of the Fourier transform, and

Olu.v) = tan * S"{F(u,v)})
plu,v) = t: (?R{F(u,v)}

is called the phase angle or phase spectrum.

e R{F(u,v)} and S{F'(u,v)} are the real and imaginary parts of
F(u,v), respectively.
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Fourier transform

e [he spectrum need not be interpreted as an image, but rather as a
2D display of the power in the original image versus the frequency
components u and v.

e The value F'(0,0) is the average of f(x,vy).

e Fourier transform is conjugate symmetric (F'(u,v) = F*(—u, —v))
and its spectrum is symmetric about the origin (|F(u,v)
|F'(—u, —v)|) (when f(z,y) is real).

e Usually the input image function is multiplied by (—1)*T¥ prior to
computing the Fourier transform so that

Sf(z,y) (1) Y] = F(u — M/2,v — N/2).

The origin of the Fourier transform is located at w = M /2 and
v=DN/2
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Fourier transform

Spatial domain Frequency domain
f(z) F(s) = / f(z)e 2T 4y
$box(x) } sinc(s)
Ry NN AL NN
i gauss(x; o) » gauss(s; 1/o)
/T
L ’“H.h j"i __.r"lll "..."‘»-‘_ =$
} sinc(s) $box(x)

Adapted from Alexei Efros, CMU
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Fourier transform
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Adapted from Gonzales and Woods
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a b

FIGURE 4.3

(a) Image of a
20 X 40 white
rectangle on a
black background
of size 512 X 512
pixels

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with
Fig. 4.2
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Fourier transform

e The power spectrum is defined as the square of the
Fourier spectrum:

P(u,v) = |F(u,v)|"
= R F(u,v)} + SH{F(u,v)}.

e The radial distribution of values in the Fourier spectrum
of an image is sensitive to texture coarseness in that
iImage.

» A coarse texture will have high values concentrated
near the origin of the spectrum.
» A fine texture will cause the values to be spread out.
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Fourier transform

e The angular distribution of values in the spectrum is
sensitive to the directionality of the texture in the image.
» A texture with many edges in a given direction ¢
will have high values of the spectrum concentrated
around the perpendicular direction 6 + 7 /2.
» For a non-directional texture, the spectrum is also
non-directional.

e \We will come back to this when we talk about texture.
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Fourier transform

Figure 5.42: Four images (above) and their power spectrums (below). The power spectrum
of the brick texture shows energy in many sinusoids of many frequencies, but the dominant
direction is perpendicular to the 6 dark seams running about 45 degrees with the Y-axis.
There is noticable energy at 0 degrees with the X axis, due to the several short vertical
seams. The power spectrum of the building shows high frequency energy in waves along
the X-direction and the Y-direction. The third image 1s an aerial image of an orchard:
the power spectrum shows the rows and columns of the orchard and also the “diagnonal
rows” . The far right image, taken from a phone book, shows high frequency power at about
60° with the X-axis, which represents the texture in the lines of text. Energy is spread
more broadly in the perpendicular direction also in order to model the characters and their

spacing. Adapted from Shapiro and Stockman
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Fourier transform

Example building patterns
in a satellite image and
their Fourier spectrum.
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Convolution theorem

e The discrete convolution of two functions f(z,y) and
h(xz,y) of size M x N is defined as
M-1N-1

f(x,y)xh(x,y) = TIN T T f(m,n) h(x—m,y—n).

m=0 n=0
e This is equivalent to the correlation of f(x,y) with
h(xz,y) flipped about the origin.

e Convolution theorem:
fla,y) *h(x,y) & Flu,v) H(u,v)
f(x.y) Mz, y) < Flu,v) x H(u, v)

where “&" indicates a Fourier transform pair.
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Frequency domain filtering

Filter image f(r,y) with mask h(z,y)

(1) Fourier transform the image f(z,y) to obtain its frequency rep. F(u,v).

(2) Fourier transform the mask h(z, y) to obtain its frequency rep. H(u,v)

(3) multiply F'(u,v) and H(u,v) pointwise to obtain F'(u,v)

(4) apply the inverse Fourier transform to F'(u, v) to obtain the filtered image f'(x, y).

Algorithm 3: Filtering image f(x,y) with mask h{z, y) using the Fourier transform

Frequency domain filtering operation

Fourier Filter Inverse
! - function - Fourier
transform
Hu,v) transform
Flu, v) Hiu, v)Flu, v)

Pre- Post-
processing processing
flx.y) g(x.y)

Input Enhanced
image image
FIGURE 4.5 Basic steps for filtering in the frequency domain. Adapted from Shapiro and Stockman,

and Gonzales and Woods
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Frequency domain filtering

H (1) H(u) ab
! ¢ d

y
FIGURE 4.9
(a) Gaussian
frequency domain
lowpass filter.
(b) Gaussian
frequency domain
highpass filter.
(c) Corresponding
lowpass spatial

Ll [}

filter.

(d) Corresponding

highpass spatial

filter. The masks

h(x) shown are used in

f Chapter 3 for
lowpass and

I highpass filtering.

Ll U]

11 0f=1]0

Since the discrete Fourier transform is periodic, padding is
needed in the implementation to avoid aliasing (see section
4.6 in the Gonzales-Woods book for implementation details).
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Frequency domain filtering

a(x,y)

CS 484, Spring 2007 2007, Selim Akso _ 20
pring © Y Adapted from Alexei Efros, CMU



Smoothing frequency domain filters

Hu.v) Hiu v)
3

1

=D, v)

abc

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displaved as an
image. (¢) Filter radial cross section.

e . . . .

aaaadaaadadd

ab

Adapted from Gonzales and Woods FIGURE 4.11 (a) An image of size 500 X 500 pixels and (b) its Fourier spectrum. The

. superimposed circles have radii values of 5. 15, 30, 80, and 230, which enclose 92.0,
CS 484, Spring 2007 04.6.,96.4,98.0, and 99.5% of the image power, respectively.



Smoothing frequency domain filters

CS 484, Spring 2007
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a b FIGURE 4.12 (a) Original image. (h]—(.[“,l Results of ideal lowpass filtering with cutoff
¢ d [frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ { power removed by these filters was 8,5.4.3.6.2, and 0.5% of the total. respectively.
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Smoothing frequency domain filters

Hu, v) Hu, v)
t Lo}

0.667

D =100

---------

fffff
naam L et -\.:-2'_ .,

= D, v)

a b c

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,,.

Adapted from Gonzales and Woods
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Smoothing frequency domain filters
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FIGURE 4.18 {a) Crizinal image. {b)—(1) Results of fllering with Gaussian lowpass  a b
filters with cutofl frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in - ¢ d
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Sharpening frequency domain

filters

CS 484, Spring 2007
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FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

©2007, Selim Aksoy
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Sharpening frequency domain filters

40
FIGURE 4.23 Spatial representations of typical (a) ideal. (b) Butterworth, and (c) Gaussian frequency
domain highpass filters, and corresponding gray-level profiles.
Adapted from Gonzales and Woods
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Sharpening frequency domain filters

- o,y f
: & = 4
H. o & 8 e . E_ i

SR R

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b),

Adapted from Gonzales and Woods
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Sharpening frequency domain filters

S e

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11{a) using a GHPF of order 2 with Dy, = 15.
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.

Adapted from Gonzales and Woods
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Frequency domain processing

An image and its Fourier spectrum.

Adapted from Alexei Efros, CMU
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Frequency domain processing

1 FFT of ARCOSL.TGA ‘ARCOSL.TGA 1 YFFT of ARCOSL.TGA

e -#"' ] ‘

- FFT of ARCOSL. TGA I JARCOSL.TGA 1 !EE S FFT of ARCDSL.TGA
o'l o f ‘ i

4 ha | 'i.; i t
-,ﬁi'?if :4‘ . "

¥ =
ey

Results of modifying the spectrum and reconstructing the image.

Adapted from Alexei Efros, CMU
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Frequency domain processing

1 FFT of ARCOSL.TGA

{FFT of AL.BMP X ALBMP 1 M=l E3

Results of modifying the spectrum and reconstructing the image.

Adapted from Alexei Efros, CMU
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Template matching

= Correlation can also be used for matching.

= If we want to determine whether an image f
contains a particular object, we let h be that
object (also called a template) and compute the
correlation between f and h.

= If there is @ match, the correlation will be
maximum at the location where h finds a
correspondence in f.

= Preprocessing such as scaling and alignment is
necessary in most practical applications.
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Template matching
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FIGURE 4.41

(a) Image.

(b} Template.

) and

() Padded
images.

{2) Correlation
function displayed
as an image.

() Horizon tal
profile ling
through the
highest value in
(). showing the
point at which the
best match took
place.

Highest correlation
value

Gray-level
profile line
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Adapted from Gonzales and Woods
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Template matching

Face detection using template matching: face templates.

CS 484, Spring 2007 ©2007, Selim Aksoy
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Template matching

Face detection using template matching: detected faces.
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Resizing images

How can we generate a
nalf-sized version of a
arge image?

PP Adapted from Steve Seitz, U of Washington
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Resizing images

Throw away every other row and column to create
a 1/2 size image (also called sub-sampling).

Adapted from Steve Seitz, U of Washington
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Resizing images

1/2 ' 1/4 (2x zoom) 1/8 (4x zoom)

Does this look nice?

Adapted from Steve Seitz, U of Washington
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Resizing images

= We cannot shrink an image by simply taking every k'th pixel.
= Solution: smooth the image, then sub-sample.

M Gaussian 1/8
Gaussian 1/4

Adapted from Steve Seitz, U of Washington
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Resizing images

i
1 . | i
¥ 1'!.,: i

o

Gaussian 1/2 Gaussian 1/4 Gaussian 1/8
(2x zoom) (4x zoom)

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

Examples of GOOD sampling Examples of BAD sampling -> Aliasing

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

= Errors appear if we do not sample properly.

= Common phenomenon:

» High spatial frequency components of the image appear
as low spatial frequency components.

= Examples:
= Wagon wheels rolling the wrong way in movies.
» Checkerboards misrepresented in ray tracing.
» Striped shirts look funny on color television.
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Gaussian pyramids

1x1 I Level 0 {apex) =
b
2x2 , Level 1
N FIGURE7.2 (a) A
4% 4 5Tt pvramidal image
r W structure and
p N Wt . (b) system block

diagram for
creating it.

N2 w N2 S
s

Level d — 1

™,

N XN, Level J (base)

Downsampler

Approximation Levelj — 1
filter 2+ T approximation

24

Upsampler

Interpolation

filter
Prediction
_ Level j
 Levelj & prediction
input image residual

Adapted from Gonzales and Woods
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Gaussian pyramids

m U4 = (G, ™ gaussian) 32

311 down-samp]

Low resolution

[ 3

U

G, =G, %grau:man) N2

High resolution

[rani & Basri

Adapted from Michael Black, Brown University
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Gaussian pyramids

EcEFeT

A bar in the
_big images is a
' hair on the
zebra’s nose;
in smaller

< ! images, a

- , stripe; in the
smallest, the

animal’s nose

Ponce & Forsyth

- Adapted from David Forsyth, UC Berkeley
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Gaussian pyramids

. search i

!

F

Irani & Basri

Adapted from Michael Black, Brown University
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