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Image matching

Image matching is a fundamental aspect of many 
problems in computer vision.

Object or scene recognition
Solving for 3D structure from multiple images
Stereo correspondence
Image alignment & stitching
Image search
Motion tracking

Find “interesting” pieces of the image.
Focus attention of algorithms
Speed up computation
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Image matching applications

Object recognition: Find correspondences between feature 
points in training and test images.
3D reconstruction: find correspondences between feature 
points in two images of the same scene.

Adapted from Martial Hebert, CMU
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Image matching applications

Stereo correspondence
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Image matching applications

Recognition

Texture recognition

Car detection
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Image matching applications

3D recognition
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Image matching
Matching based on correlation alone.
Matching based on edge pixels or line segments.

Not very discriminant.

Solution: matching with interest points & correlation.
Discrete, reliable and meaningful.

0D structure
not useful for matching

1D structure
edge, can be localized in 1D, 
subject to the aperture problem

2D structure
corner, or interest point, can be 
localized in 2D, good for matching

Adapted from Matthew Brown, Microsoft Research
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Image matching

There are three important requirements for 
feature points to have a better correspondence for 
matching:

Points corresponding to the same scene points should 
be extracted consistently over different views.
They should be invariant to image scaling, rotation and 
to change in illumination and 3D camera viewpoint.
There should be enough information in the 
neighborhood of the points so that corresponding points 
can be automatically matched.
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Interest points
Interest points: local invariant photometric descriptors.

Local : robust to occlusion/clutter  + no segmentation.
Photometric : distinctive.
Invariant : to image transformations + illumination 
changes.

( )
local descriptor
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Interest points
Intuitively junctions or contours.
Generally more stable features over changes of viewpoint.
Intuitively large variations in the neighborhood of the point 
in all directions.

Adapted from Martial Hebert, CMU
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Overview of the approach

1. Extraction of interest points (characteristic locations).
2. Computation of local descriptors.
3. Determining correspondences.
4. Selection of similar images.

( )
local descriptor

interest points
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Harris detector

Based on the idea of auto-correlation.

Important difference in all directions
interest point.
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Harris detector
Auto-correlation function (ACF) measures the self similarity 
of a signal and is related to sum-of-square difference (SSD).

Adapted from Matthew Brown, Microsoft Research
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Harris detector
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Harris detector
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Harris detector

Auto-correlation matrix
captures the structure of the local neighborhood
measure based on eigenvalues of M

2 strong eigenvalues interest point (corner)
1 strong eigenvalue contour
0 eigenvalue uniform region

Eigenvalues are proportional to the principal 
curvatures of the local auto-correlation function, 
and form a rotationally invariant description of M.
Interest point detection:

threshold on the eigenvalues
local maximum for localization
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Harris detector

To measure the corner strength:
R = det(M) – k(trace(M))2

where
trace(M) = λ1 + λ2

det(M) = λ1 x λ2

(λ1 and λ2 are the eigenvalues of M).
R is positive for corners, negative in edge regions, 
and small in flat regions.
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Harris detector

Adapted from Martial Hebert, CMU
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Local descriptors

Descriptors characterize the local neighborhood of 
a point.

Gray values can be used directly.
Gray value derivatives or differential invariants can also 
be used.
Values can be normalized for invariance to illumination.

( )
local descriptor
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Determining correspondences

Vector comparison using a distance measure.

( ) ( )=?
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Matching examples

Adapted from Matthew Brown, Microsoft Research
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Matching examples
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Retrieval examples

Retrieval in a large database using:
voting algorithm
additional constraints

Rapid access with an indexing mechanism.
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Retrieval examples

Voting algorithm:

local characteristics
vector of

( )
1I 1I nI2I2I
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Retrieval examples

Compute a set of invariant features V around each 
interest point for each image in the database.
For a query image compute the same model.
Compare the vectors for each of the interest 
points in the query image with all the models in 
the database.
If distance is below some threshold then give a 
vote to the corresponding model.
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Retrieval examples
Semi-local constraints

neighboring points should match
angles, length ratios should be similar

Global constraints
Robust estimation of the image transformation 
(homogaphy, epipolar geometry)
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Retrieval examples

database with ~1000 images

The image on the right is correctly retrieved using
any of the images on the left.
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Retrieval examples
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Invariance

original translated rotated scaled

???Is correlation 
invariant?

???Is Harris 
invariant?

ScaleRotationTranslation

Adapted from Matthew Brown, Microsoft Research
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Invariance

original translated rotated scaled

NONOYESIs correlation 
invariant?

NOYESYESIs Harris 
invariant?

ScaleRotationTranslation

Adapted from Matthew Brown, Microsoft Research
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Multi-scale oriented patches

Extract oriented patches at multiple scales.

Adapted from Matthew Brown, Microsoft Research
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Summary of the approach

Very good results in the presence of occlusion and 
clutter:

local information
discriminant gray value information
invariance to image rotation and illumination

No invariance to scale and affine changes.
Solution for more general viewpoint changes:

local invariant descriptors to scale and rotation
extraction of invariant points and regions
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Approach for matching and recognition
Detection of interest points/regions

Harris  detector (extension to scale and affine invariance)
Blob detector based on Laplacian

Computation of descriptors for each point
Gray value patch, differential invariants, steerable filter, SIFT 
descriptor

Similarity of descriptors
Correlation, Mahalanobis distance, Euclidean distance

Semi-local constraints
Geometrical or statistical relations between neighborhood points

Global verification
Robust estimation of geometry between images
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SIFT (Scale Invariant Feature Transform)

The original Harris operator was not invariant to 
scale and its descriptor was not invariant to 
rotation.
For better image matching, David Lowe’s goal was 
to develop an operator that is invariant to scale 
and rotation.
The operator he developed is both a detector and 
a descriptor, and can be used for both image 
matching and object recognition.
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Idea of SIFT

Image content is transformed into local feature 
coordinates that are invariant to translation, 
rotation, scale, and other imaging parameters.

SIFT Features
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Claimed advantages of SIFT

Locality: features are local, so robust to 
occlusion and clutter (no prior segmentation).
Distinctiveness: individual features can be 
matched to a large database of objects.
Quantity: many features can be generated for 
even small objects.
Efficiency: close to real-time performance.
Extensibility: can easily be extended to wide 
range of differing feature types, with each adding 
robustness.
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Overall approach for SIFT

1. Scale space extrema detection
Search over multiple scales and image locations.

2. Keypoint localization
Fit a model to determine location and scale.
Select keypoints based on a measure of stability.

3. Orientation assignment.
Compute best orientation(s) for each keypoint region.

4. Keypoint description
Use local image gradients at selected scale and 
rotation to describe each keypoint region.
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Scale space extrema detection

Goal: Identify locations and scales that can be 
repeatably assigned under different views of the 
same scene or object.
Method: search for stable features across multiple 
scales using a continuous function of scale.
Prior work has shown that under a variety of 
assumptions, the best function is a Gaussian 
function.
The scale space of an image is a function L(x,y,σ)
that is produced from the convolution of a 
Gaussian kernel (at different scales) with the input 
image.
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Scale space interest points

Laplacian of Gaussian kernel
Scale normalized
Proposed by Lindeberg

Scale space detection
Find local maxima across scale/space
A good “blob” detector
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Scale space interest points
Scale space function L

Gaussian convolution

where σ is the width of the Gaussian

Difference of Gaussian kernel is a close approximate to scale-
normalized Laplacian of Gaussian

2 scales: σ and kσ

Can approximate the Laplacian of Gaussian kernel with a difference 
of separable convolutions
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Lowe’s pyramid scheme

For each octave of scale space, the initial image is repeatedly convolved with Gaussian 
to produce the set of scale space images (left). Adjacent Gaussian images are 
subtracted to produce difference of Gaussian images (right). After each octave Gaussian 
image is downsampled by a factor of 2.
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Keypoint localization
Detect maxima and 
minima of difference of 
Gaussian in scale space.

Each point is compared to 
its 8 neighbors in the 
current image and 9 
neighbors each in the 
scales above and below.

Select only if it is greater 
or smaller than all the 
others.

For each max or min 
found, output is the 
location and the scale.
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Keypoint localization
Detailed keypoint determination

Sub-pixel and sub-scale location scale determination.
Ratio of principal curvature to reject edges and flats (like detecting 
corners).

Once a keypoint candidate is found, perform a detailed fit 
to nearby data to determine

location, scale, and ratio of principal curvatures.

In initial work keypoints were found at location and scale 
of a central sample point.
In newer work, they fit a 3D quadratic function to improve 
interpolation accuracy.
The Hessian matrix was used to eliminate edge responses.



CS 484, Spring 2007 ©2007, Selim Aksoy 44

Orientation assignment
Create histogram of local 
gradient directions computed at 
selected scale.

Assign canonical orientation at 
peak of smoothed histogram.

Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation).

0 2π



CS 484, Spring 2007 ©2007, Selim Aksoy 45

Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach).

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures



CS 484, Spring 2007 ©2007, Selim Aksoy 46

Keypoint descriptors

At this point, each keypoint has
location,
scale,
orientation.

Next step is to compute a descriptor for the local 
image region about each keypoint that is

highly distinctive,
invariant as possible to variations such as changes in 
viewpoint and illumination.
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Lowe’s keypoint descriptor
Use the normalized circular region about the keypoint.

Rotate the window to standard orientation.
Scale the window size based on the scale at which the point was 
found.

Compute gradient magnitude and orientation at each point 
in the region.
Weight them by a Gaussian window overlaid on the circle.
Create an orientation histogram over the 4x4 subregions of 
the window.
4x4 descriptors over 16x16 sample array were used in 
practice. 4x4 times 8 directions gives a vector of 128 
values.



CS 484, Spring 2007 ©2007, Selim Aksoy 48

Lowe’s keypoint descriptor

In the paper, 4x4 arrays of 8 bin histogram is used, resulting in a total 
of 128 features for one keypoint (shown with 2x2 descriptors over 8x8 
array).
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Examples: image retrieval

…
> 5000
images

change in viewing angle
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Examples: image retrieval

22 correct matches
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Examples: image retrieval

…
> 5000
images

change in viewing angle
+ scale change
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Examples: image retrieval

33 correct matches
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Examples: 3D recognition
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Examples: 3D recognition

3D object modeling and recognition using 
affine-invariant patches and multi-view 
spatial constraints
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Examples: 3D recognition
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Examples: 3D recognition
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Examples: location recognition
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Examples: robot localization
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Examples: robot localization

Map continuously built over time
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Examples: panaromas
Matthew Brown and David Lowe
Recognize overlap from an unordered set of images and 
automatically stitch together.
SIFT features provide initial feature matching.
Image blending at multiple scales hides the seams.

Panorama of Lowe’s lab automatically assembled from 143 images
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Examples: panaromas

Multiple panaromas from 
an unordered image set



CS 484, Spring 2007 ©2007, Selim Aksoy 62

Examples: panaromas
Image registration and blending


