
Introduction to Pattern Recognition
Part II

Selim Aksoy

Department of Computer Engineering

Bilkent University

saksoy@cs.bilkent.edu.tr

CS 484, Spring 2007 c©2007, Selim Aksoy



Overview

• Statistical pattern recognition

I Bayesian Decision Theory

– Parametric models

– Non-parametric models

I Feature reduction and selection

I Non-Bayesian classifiers

– Distance-based classifiers

– Decision boundary-based classifiers

I Unsupervised learning and clustering

I Algorithm-independent learning issues

– Estimating and comparing classifiers

– Combining classifiers

• Structural and syntactic pattern recognition
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Bayesian Decision Theory

• Bayesian Decision Theory is a statistical approach that

quantifies the tradeoffs between various decisions using

probabilities and costs that accompany such decisions.

• Fish sorting example: define w, the type of fish we

observe (state of nature), as a random variable where

I w = w1 for sea bass,

I w = w2 for salmon.

I P (w1) is the a priori probability that the next fish is

a sea bass.

I P (w2) is the a priori probability that the next fish is

a salmon.
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Prior Probabilities

• Prior probabilities reflect our knowledge of how likely

each type of fish will appear before we actually see it.

• How can we choose P (w1) and P (w2)?
I Set P (w1) = P (w2) if they are equiprobable (uniform

priors).

I May use different values depending on the fishing

area, time of the year, etc.

• Assume there are no other types of fish

P (w1) + P (w2) = 1

(exclusivity and exhaustivity).
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Making a Decision

• How can we make a decision with only the prior

information?

Decide

{
w1 if P (w1) > P (w2)

w2 otherwise

• What is the probability of error for this decision?

P (error) = min{P (w1), P (w2)}
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Class-conditional Probabilities

• Let’s try to improve the decision using the lightness

measurement x.

• Let x be a continuous random variable.

• Define p(x|wj) as the class-conditional probability

density (probability of x given that the state of nature

is wj for j = 1, 2).

• p(x|w1) and p(x|w2) describe the difference in lightness

between populations of sea bass and salmon.
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Posterior Probabilities

• Suppose we know P (wj) and p(x|wj) for j = 1, 2, and

measure the lightness of a fish as the value x.

• Define P (wj|x) as the a posteriori probability

(probability of the state of nature being wj given the

measurement of feature value x).

• We can use the Bayes formula to convert the prior

probability to the posterior probability

P (wj|x) =
p(x|wj)P (wj)

p(x)

where p(x) =
∑2

j=1 p(x|wj)P (wj).

CS 484, Spring 2007 c©2007, Selim Aksoy 6/64



Making a Decision

• p(x|wj) is called the likelihood and p(x) is called the

evidence.

• How can we make a decision after observing the value

of x?

Decide

{
w1 if P (w1|x) > P (w2|x)

w2 otherwise

• Rewriting the rule gives

Decide

{
w1 if p(x|w1)

p(x|w2) > P (w2)
P (w1)

w2 otherwise

• Note that, at every x, P (w1|x) + P (w2|x) = 1.
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Making a Decision

Figure 1: Optimum thresholds for different priors.
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Probability of Error

• What is the probability of error for this decision?

P (error |x) =

{
P (w1|x) if we decide w2

P (w2|x) if we decide w1

• What is the average probability of error?

P (error) =
∫ ∞

−∞
p(error , x) dx =

∫ ∞

−∞
P (error |x) p(x) dx

• Bayes decision rule minimizes this error because

P (error |x) = min{P (w1|x), P (w2|x)}.
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Probability of Error

Figure 2: Components of the probability of error for equal priors and the non-optimal
decision point x∗. The optimal point xB minimizes the total shaded area and gives
the Bayes error rate.
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Receiver Operating Characteristics

• Consider the two-category case and define

I w1: target is present,

I w2: target is not present.

Table 1: Confusion matrix .

Assigned

w1 w2

True
w1 correct detection mis-detection

w2 false alarm correct rejection

• Mis-detection is also called false negative or Type I

error.

• False alarm is also called false positive or Type II error.
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Receiver Operating Characteristics

• If we use a parameter

(e.g., a threshold) in our

decision, the plot of these

rates for different values

of the parameter is called

the receiver operating

characteristic (ROC)

curve.

Figure 3: Example receiver operating
characteristic (ROC) curves for different
settings of the system.
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Bayesian Decision Theory

• How can we generalize to

I more than one feature?

– replace the scalar x by the feature vector x
I more than two states of nature?

– just a difference in notation

I allowing actions other than just decisions?

– allow the possibility of rejection

I different risks in the decision?

– define how costly each action is
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Minimum-error-rate Classification

• Let {w1, . . . , wc} be the finite set of c states of nature

(classes, categories).

• Let x be the d-component vector-valued random

variable called the feature vector .

• If all errors are equally costly, the minimum-error

decision rule is defined as

Decide wi if P (wi|x) > P (wj|x) ∀j 6= i.

• The resulting error is called the Bayes error and is the

best performance that can be achieved.
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Bayesian Decision Theory

• Bayesian Decision Theory shows us how to design an

optimal classifier if we know the prior probabilities P (wi)
and the class-conditional densities p(x|wi).

• Unfortunately, we rarely have complete knowledge of

the probabilistic structure.

• However, we can often find design samples or training

data that include particular representatives of the

patterns we want to classify.
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Bayesian Decision Theory

• How can we estimate (learn) the unknown p(x|wj), j = 1, . . . , c?

• Parametric models: assume that the form of the density functions

are known.

I Density models (e.g., Gaussian)

I Mixture models (e.g., mixture of Gaussians)

I Hidden Markov Models

I Bayesian Belief Networks

• Non-parametric models: no assumption about the form.

I Histogram-based estimation

I Parzen window estimation

I Nearest neighbor estimation
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The Gaussian Density

• Gaussian can be considered as a model where the feature vectors for

a given class are continuous-valued, randomly corrupted versions

of a single typical or prototype vector.

• Some properties of the Gaussian:

I Analytically tractable.

I Completely specified by the 1st and 2nd moments.

I Has the maximum entropy of all distributions with a given

mean and variance.

I Many processes are asymptotically Gaussian (Central Limit

Theorem).

I Linear transformations of a Gaussian are also Gaussian.

I Uncorrelatedness implies independence.
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Univariate Gaussian

• For x ∈ R:

p(x) = N(µ, σ2)

=
1√
2πσ

exp

[
−1

2

(
x− µ

σ

)2
]

where

µ = E[x] =
∫ ∞

−∞
x p(x) dx,

σ2 = E[(x− µ)2] =
∫ ∞

−∞
(x− µ)2 p(x) dx.
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Univariate Gaussian

Figure 4: A univariate Gaussian distribution has roughly 95% of its area in the
range |x− µ| ≤ 2σ.
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Multivariate Gaussian

• For x ∈ Rd:

p(x) = N(µ,Σ)

=
1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
where

µ = E[x] =
∫

x p(x) dx,

Σ = E[(x− µ)(x− µ)T ] =
∫

(x− µ)(x− µ)T p(x) dx.
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Multivariate Gaussian

Figure 5: Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean µ. The loci of points of constant density are the ellipses for which
(x − µ)TΣ−1(x − µ) is constant, where the eigenvectors of Σ determine the
direction and the corresponding eigenvalues determine the length of the principal
axes. The quantity r2 = (x − µ)TΣ−1(x − µ) is called the squared Mahalanobis
distance from x to µ.
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Gaussian Density Estimation

• The maximum likelihood estimates of a Gaussian are

µ̂ =
1
n

n∑
i=1

xi and Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T .

Figure 6: Gaussian density estimation examples.
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Bernoulli Density Estimation

• Suppose that P (x|θ) = Bernoulli(θ) = θx(1 − θ)1−x

where x = 0, 1 and 0 ≤ θ ≤ 1.

• The maximum likelihood estimate of θ can be computed

as

θ̂ =
1
n

n∑
i=1

xi.
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Non-parametric Density Estimation

• Density estimation with parametric models assumes that

the forms of the underlying density functions are known.

• However, common parametric forms do not always fit

the densities actually encountered in practice.

• In addition, most of the classical parametric densities

are unimodal, whereas many practical problems involve

multimodal densities.

• Non-parametric methods can be used with arbitrary

distributions and without the assumption that the forms

of the underlying densities are known.
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Histogram Method

• A very simple method is

to partition the space into

a number of equally-sized

cells (bins) and compute

a histogram.

Figure 7: Histogram in one dimension.

• The estimate of the density at a point x becomes

p(x) =
k

nV
where n is the total number of samples, k is the number

of samples in the cell that includes x, and V is the

volume of that cell.
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Classification Error

• To apply these results to multiple classes, separate

the training samples to c subsets D1, . . . ,Dc, with the

samples in Di belonging to class wi, and then estimate

each density p(x|wi,Di) separately.

• Different sources of error:

I Bayes error: due to overlapping class-conditional

densities (related to the features used).

I Model error: due to incorrect model.

I Estimation error: due to estimation from a finite

sample (can be reduced by increasing the amount of

training data).
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Feature Reduction and Selection

• In practical multicategory applications, it is not unusual

to encounter problems involving tens or hundreds of

features.

• Intuitively, it may seem that each feature is useful for

at least some of the discriminations.

• There are two issues that we must be careful about:

I How is the classification accuracy affected by the

dimensionality (relative to the amount of training

data)?

I How is the computational complexity of the classifier

affected by the dimensionality?
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Problems of Dimensionality

• In general, if the performance obtained with a given set

of features is inadequate, it is natural to consider adding

new features.

• Unfortunately, it has frequently been observed in

practice that, beyond a certain point, adding new

features leads to worse rather than better performance.

• This is called the curse of dimensionality .

• Potential reasons include wrong assumptions in model

selection or estimation errors due to the finite number

of training samples for high-dimensional observations

(overfitting).
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Problems of Dimensionality

• All of the commonly used classifiers can suffer from the

curse of dimensionality.

• While an exact relationship between the probability of

error, the number of training samples, the number of

features, and the number of parameters is very difficult

to establish, some guidelines have been suggested.

• It is generally accepted that using at least ten times

as many training samples per class as the number of

features (n/d > 10) is a good practice.

• The more complex the classifier, the larger should the

ratio of sample size to dimensionality be.
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Problems of Dimensionality

• Dimensionality can be reduced by

I redesigning the features

I selecting an appropriate subset among the existing

features

I transforming to different feature spaces

– Principal Components Analysis (PCA) seeks a

projection that best represents the data in a least-

squares sense.

– Linear Discriminant Analysis (LDA) seeks a

projection that best separates the data in a least-

squares sense.
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Examples

(a) Scatter plot.

(b) Projection onto e1.

(c) Projection onto e2.

Figure 8: Scatter plot (red dots) and the principal axes for a bivariate sample. The
blue line shows the axis e1 with the greatest variance and the green line shows the
axis e2 with the smallest variance. Features are now uncorrelated.
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Examples

(a) Scatter plot.

(b) Projection onto the first
PCA axis.

(c) Projection onto the first
LDA axis.

Figure 9: Scatter plot and the PCA and LDA axes for a bivariate sample with two
classes. Histogram of the projection onto the first LDA axis shows better separation
than the projection onto the first PCA axis.
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Examples

(a) Scatter plot.

(b) Projection onto the first
PCA axis.

(c) Projection onto the first
LDA axis.

Figure 10: Scatter plot and the PCA and LDA axes for a bivariate sample with two
classes. Histogram of the projection onto the first LDA axis shows better separation
than the projection onto the first PCA axis.
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Non-Bayesian Classifiers

• Distance-based classifiers:

I Minimum distance classifier

I Nearest neighbor classifier

• Decision boundary-based classifiers:

I Linear discriminant functions

I Support vector machines

I Neural networks

I Decision trees
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The k-Nearest Neighbor Classifier

• Given the training data D = {x1, . . . ,xn} as a set of n

labeled examples, the nearest neighbor classifier assigns

a test point x the label associated with its closest

neighbor in D.

• The k-nearest neighbor classifier

classifies x by assigning it the

label most frequently represented

among the k nearest samples.

Figure 11: Classifier for k = 5.

• Closeness is defined using a distance function.
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Distance Functions

• A general class of metrics for d-dimensional patterns is the

Minkowski metric

Lp(x,y) =

(
d∑

i=1

|xi − yi|p
)1/p

also referred to as the Lp norm.

• The Euclidean distance is the L2 norm

L2(x,y) =

(
d∑

i=1

|xi − yi|2
)1/2

• The Manhattan or city block distance is the L1 norm

L1(x,y) =
d∑

i=1

|xi − yi|
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Distance Functions

• The L∞ norm is the maximum of the distances along individual

coordinate axes

L∞(x,y) =
d

max
i=1

|xi − yi|

Figure 12: Each colored shape consists of points at a distance 1.0 from the origin,
measured using different values of p in the Minkowski Lp metric.
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Linear Discriminant Functions

Figure 13: Linear decision boundaries produced by using one linear discriminant for
each class.
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Support Vector Machines

• Given a set of training patterns and class labels as

(x1, y1), . . . , (xn, yn) ∈ Rd × {±1}, the goal is to find a

classifier function f : Rd → {±1} such that f(x) = y

will correctly classify new patterns.

• Support vector machines are based on the class of

hyperplanes

(w · x) + b = 0, w ∈ Rd, b ∈ R

corresponding to decision functions

f(x) = sign((w · x) + b).
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Support Vector Machines

( c©IEEE)

Figure 14: A binary classification problem of separating balls from diamonds.
Support vector machines find hyperplane decision boundaries that yield the
maximum margin of separation between the classes. The optimal hyperplane
is orthogonal to the shortest line connecting the convex hulls of the two classes
(dotted), and intersects it half way between the two classes.
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Support Vector Machines

• To construct the optimal hyperplane, we can define the

following optimization problem:

minimize
1
2
‖w‖2

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . , n.

• This constrained optimization problem is solved using

Lagrange multipliers αi ≥ 0 and the Lagrangian

L(w, b,α) =
1
2
‖w‖2 −

n∑
i=1

αi(yi((w · xi) + b)− 1)

where L has to be minimized w.r.t. the prime variables

w and b, and maximized w.r.t. the dual variables αi.
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Support Vector Machines

• The solution can be obtained using quadratic

programming techniques where the solution vector

w =
n∑

i=1

αi yi xi

is the summation of a subset of the training patterns,

called the support vectors, whose αi are non-zero.

• The support vectors lie on the margin and carry all

relevant information about the classification problem

(the remaining patterns are irrelevant).
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Neural Networks

Figure 15: A neural network consists of an input layer , an output layer and usually
one or more hidden layers that are interconnected by modifiable weights represented
by links between layers. They learn the values of these weights as a mapping from
the input to the output.
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Decision Trees

Figure 16: Decision trees classify a pattern through a sequence of questions, in
which the next question asked depends on the answer to the current question.
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Unsupervised Learning and Clustering

• Clustering is an unsupervised procedure that uses unlabeled

samples.

• Unsupervised procedures are used for several reasons:

I Collecting and labeling a large set of sample patterns can be

costly or may not be feasible.

I One can train with large amount of unlabeled data, and then

use supervision to label the groupings found.

I Unsupervised methods can be used for feature extraction.

I Exploratory data analysis can provide insight into the nature or

structure of the data.
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Clusters

• A cluster is comprised of a number of similar objects

collected or grouped together.

• Patterns within a cluster are more similar to each other

than are patterns in different clusters.

• Clusters may be described as connected regions of a

multi-dimensional space containing a relatively high

density of points, separated from other such regions

by a region containing a relatively low density of points.
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Clustering

• Clustering is a very difficult problem because data can

reveal clusters with different shapes and sizes.

Figure 17: The number of clusters in the data often depend on the resolution (fine
vs. coarse) with which we view the data. How many clusters do you see in this
figure? 5, 8, 10, more?
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Clustering

• Most of these algorithms are based on the following two

popular techniques:

I Iterative squared-error partitioning,

I Agglomerative hierarchical clustering.

• One of the main challenges is to select an appropriate

measure of similarity to define clusters that is often both

data (cluster shape) and context dependent.
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Squared-error Partitioning

• Suppose that the given set of n patterns has somehow been

partitioned into k clusters D1, . . . ,Dk.

• Let ni be the number of samples in Di and let mi be the mean of

those samples

mi =
1
ni

∑
x∈Di

x.

• Then, the sum-of-squared errors is defined by

Je =
k∑

i=1

∑
x∈Di

‖x−mi‖2.

• For a given cluster Di, the mean vector mi (centroid) is the best

representative of the samples in Di.

CS 484, Spring 2007 c©2007, Selim Aksoy 49/64



Squared-error Partitioning

• A general algorithm for iterative squared-error partitioning:

1. Select an initial partition with k clusters. Repeat steps 2

through 5 until the cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest

cluster center.

3. Compute new cluster centers as the centroids of the clusters.

4. Repeat steps 2 and 3 until an optimum value of the criterion

function is found (e.g., when a local minimum is found or a

predefined number of iterations are completed).

5. Adjust the number of clusters by merging and splitting existing

clusters or by removing small or outlier clusters.

• This algorithm, without step 5, is also known as the k-means

algorithm.
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Squared-error Partitioning

• k-means is computationally efficient and gives good

results if the clusters are compact, hyperspherical in

shape and well-separated in the feature space.

• However, choosing k and choosing the initial partition

are the main drawbacks of this algorithm.

• The value of k is often chosen empirically or by prior

knowledge about the data.

• The initial partition is often chosen by generating k

random points uniformly distributed within the range of

the data, or by randomly selecting k points from the

data.
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Hierarchical Clustering

• The k-means algorithm produces a flat data description

where the clusters are disjoint and are at the same level.

• In some applications, groups of patterns share some

characteristics when looked at a particular level.

• Hierarchical clustering tries to capture these multi-level

groupings using hierarchical representations rather than

flat partitions.
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Hierarchical Clustering

• In hierarchical clustering, for a set of n samples,

I the first level consists of n clusters (each cluster

containing exactly one sample),

I the second level contains n− 1 clusters,

I the third level contains n− 2 clusters,

I and so on until the last (n’th) level at which all

samples form a single cluster.

• Given any two samples, at some level they will be

grouped together in the same cluster and remain

together at all higher levels.
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Hierarchical Clustering

• A natural representation of hierarchical clustering is a tree, also

called a dendrogram, which shows how the samples are grouped.

• If there is an unusually large gap between the similarity values

for two particular levels, one can argue that the level with fewer

number of clusters represents a more natural grouping.

Figure 18: A dendrogram can represent the results of hierarchical clustering
algorithms.
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Hierarchical Clustering

• Agglomerative Hierarchical Clustering:

1. Specify the number of clusters. Place every pattern

in a unique cluster and repeat steps 2 and 3 until

a partition with the required number of clusters is

obtained.

2. Find the closest clusters according to a distance

measure.

3. Merge these two clusters.

4. Return the resulting clusters.
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Hierarchical Clustering

• Popular distance measures (for two clusters Di and Dj):

dmin(Di,Dj) = min
x∈Di
x′∈Dj

‖x− x′‖

dmax(Di,Dj) = max
x∈Di
x′∈Dj

‖x− x′‖

davg(Di,Dj) =
1

#Di #Dj

∑
x∈Di

∑
x′∈Dj

‖x− x′‖

dmean(Di,Dj) = ‖mi −mj‖
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Algorithm-Independent Learning Issues

• We have seen many learning algorithms and techniques

for pattern recognition.

• Some of these algorithms may be preferred because of

their lower computational complexity.

• Others may be preferred because they take into account

some prior knowledge of the form of the data.

• Given practical constraints such as finite training data,

no pattern classification method is inherently superior

to any other.
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Estimating and Comparing Classifiers

• Classification error can be estimated using

misclassification and false alarm rates.

• To compare learning algorithms, we should use

independent training and test data generated using

I static division,

I rotated division (e.g., cross-validation),

I bootstrap methods.

• Using the error on points not in the training set

(also called the off-training set error) is important for

evaluating the generalization ability of an algorithm.
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Combining Classifiers

• Just like different features capturing different properties of a

pattern, different classifiers also capture different structures and

relationships of these patterns in the feature space.

• An empirical comparison of different classifiers can help us choose

one of them as the best classifier for the problem at hand.

• However, although most of the classifiers may have similar error

rates, sets of patterns misclassified by different classifiers do not

necessarily overlap.

• Not relying on a single decision but rather combining the advantages

of different classifiers is intuitively promising to improve the overall

accuracy of classification.

• Such combinations are variously called combined classifiers,

ensemble classifiers, mixture-of-expert models, or pooled classifiers.
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Combining Classifiers

• Some of the reasons for combining multiple classifiers to solve a

given classification problem can be stated as follows:

I Access to different classifiers, each developed in a different

context and for an entirely different representation/description

of the same problem.

I Availability of multiple training sets, each collected at a

different time or in a different environment, even may use

different features.

I Local performances of different classifiers where each classifier

may have its own region in the feature space where it performs

the best.

I Different performances due to different initializations and

randomness inherent in the training procedure.
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Combining Classifiers

• In summary, we may have different feature sets, training sets,

classification methods, and training sessions, all resulting in a set

of classifiers whose outputs may be combined.

• Combination architectures can be grouped as:

I Parallel: all classifiers are invoked independently and then their

results are combined by a combiner.

I Serial (cascading): individual classifiers are invoked in a linear

sequence where the number of possible classes for a given

pattern is gradually reduced.

I Hierarchical (tree): individual classifiers are combined into a

structure, which is similar to that of a decision tree, where the

nodes are associated with the classifiers.
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Combining Classifiers

• Examples of classifier combination schemes are:

I Majority voting where each classifier makes a binary decision

(vote) about each class and the final decision is made in favor

of the class with the largest number of votes.

I Bayesian combination: sum, product, maximum, minimum and

median of the posterior probabilities from individual classifiers.

I Bagging where multiple classifiers are built by bootstrapping

the original training set.

I Boosting where a sequence of classifiers is built by training each

classifier using data sampled from a distribution derived from

the empirical misclassification rate of the previous classifier.
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Structural and Syntactic Pattern
Recognition

• Statistical pattern recognition attempts to classify patterns based

on a set of extracted features and an underlying statistical model

for the generation of these patterns.

• Ideally, this is achieved with a rather straightforward procedure:

I determine the feature vector,

I train the system,

I classify the patterns.

• Unfortunately, there are also many problems where patterns contain

structural and relational information that are difficult or impossible

to quantify in feature vector form.
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Structural and Syntactic Pattern
Recognition

• Structural pattern recognition assumes that pattern structure is

quantifiable and extractable so that structural similarity of patterns

can be assessed.

• Typically, these approaches formulate hierarchical descriptions of

complex patterns built up from simpler primitive elements.

• This structure quantification and description are mainly done using:

I Formal grammars,

I Relational descriptions (principally graphs).

• Then, recognition and classification are done using:

I Parsing (for formal grammars),

I Relational graph matching (for relational descriptions).
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