Image Classification and Object Recognition

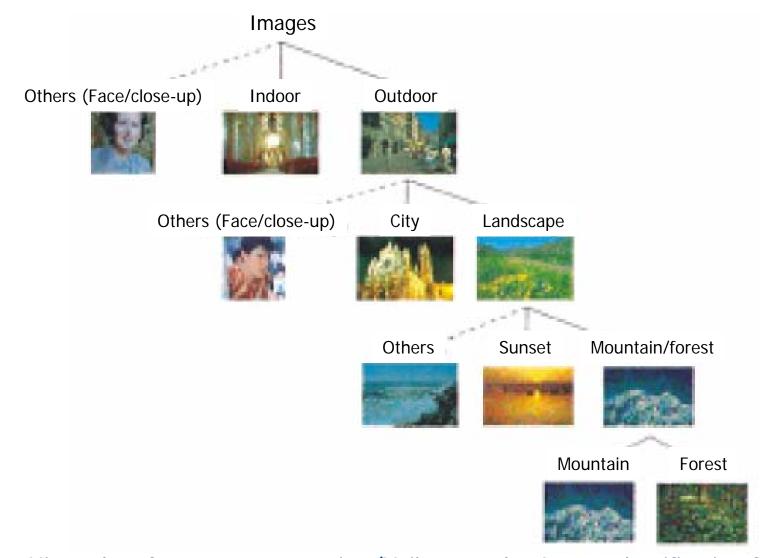
Selim Aksoy
Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

Image classification

- Image (scene) classification is a fundamental problem in image understanding.
- Automatic techniques for associating scenes with semantic labels have a high potential for improving the performance of other computer vision applications such as
 - browsing (natural grouping of images instead of clusters based only on low-level features),
 - retrieval (filtering images in archives based on content), and
 - object recognition (the probability of an unknown object/region that exhibits several local features of a ship actually being a ship can be increased if the scene context is known to be a coast with high confidence but can be decreased if no water related context is dominant in that scene).

Image classification

- The image classification problem has two critical components: representing images and learning models for semantic categories using these representations.
- Early work used low-level global features extracted from the whole image or from a fixed spatial layout.
- More recent approaches exploit local statistics in images using patches extracted by interest point detectors.
- Other configurations that use regions and their spatial relationships are also proposed.



Hierarchy of 11 scene categories (Vailaya et al., "Image classification for content-based indexing," IEEE Trans. Image Processing, 2001).

Image representation:

- Mean and std. dev. of LUV values in 10x10 blocks for indoor/outdoor classification.
- Edge direction histograms for city/landscape classification.
- Histograms of HSV and LUV values for sunset/mountain/forest classification.

Classification:

- Class-conditional density estimation using vector quantization.
- Bayesian classification.

TABLE III
ACCURACIES (IN PERCENT) FOR INDOOR/OUTDOOR CLASSIFICATION USING
COLOR MOMENTS; TEST SET 1 AND TEST SET 2 ARE INDEPENDENT TEST SETS

Test Data	Database Size	Accuracy (%)
Training Set	2,541	94.2
Test Set 1	2,540	88.2
Test Set 2	1,850	88.7
Entire Database	6,931	90.5

TABLE IV

CLASSIFICATION ACCURACIES (IN PERCENT) FOR CITY/LANDSCAPE CLASSIFICATION; THE FEATURES ARE ABBREVIATED AS FOLLOWS: EDGE DIRECTION HISTOGRAM (EDH), EDGE DIRECTION COHERENCE VECTOR (EDCV), COLOR HISTOGRAM (CH), AND COLOR COHERENCE VECTOR (CCV)

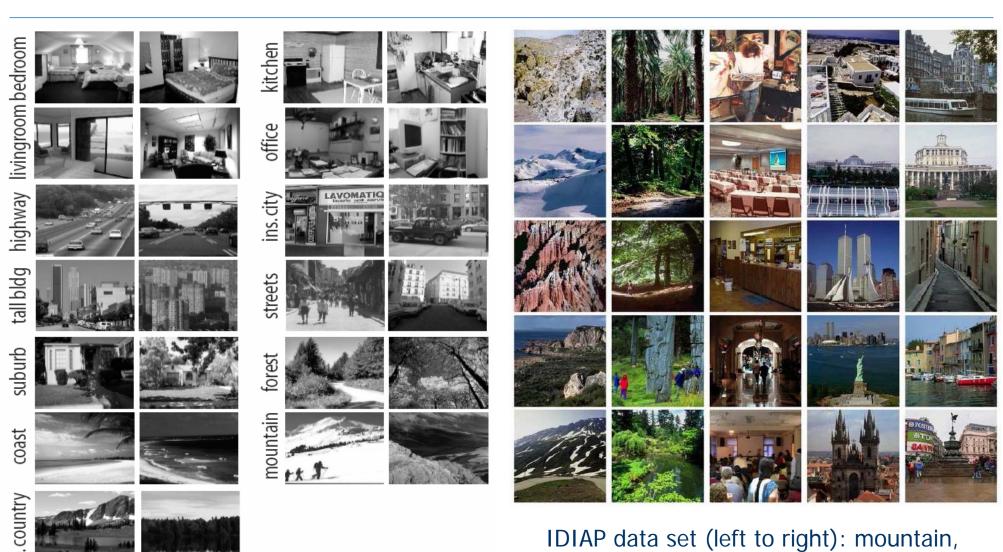
Test Data	EDH	EDCV	СН	CCV	EDH & CH	EDH & CCV	EDCV & CH	EDCV & CCV
Training Set	94.7	97.0	83.7	83.5	94.8	95.4	96.4	96.9
Test Set	92.0	92.9	75.4	76.0	92.5	92.8	93.4	93.8
Entire Database	93.4	95.0	79.6	79.8	93.7	94.1	94.9	95.3

 ${\it TABLE\ V}$ Classification Accuracies (in Percent) for Sunset/Forest/Mountain Classification; SPM Stands for "Spatial Color Moments"

Test Data	EDH	EDCV	СН	CCV	SPM	EDH & CH	EDH & CCV	EDCV & CH	EDCV & CCV
Training Set	88.3	88.3	96.2	99.2	98.9	95.9	96.6	95.5	97.0
Test Set	86.3	89.0	89.7	93.9	93.9	90.1	95.4	90.5	95.1
Entire Database	87.4	88.7	93.0	96.6	96.4	93.0	96.0	93.0	96.1

TABLE VI CLASSIFICATION ACCURACIES (IN PERCENT) FOR FOREST/MOUNTAIN CLASSIFICATION

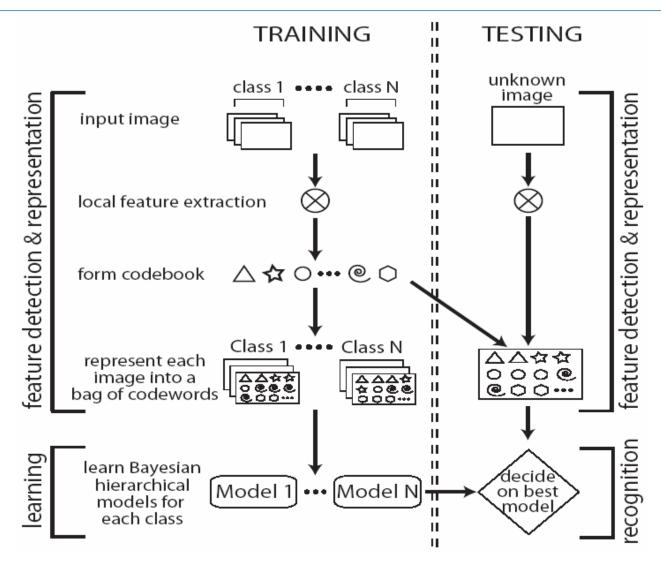
Test Data	EDH	EDCV	СН	ccv	SPM	EDH & CH	EDH & CCV	EDCV & CH	EDCV & CCV
Training Set	83.4	78.1	92.0	98.9	98.4	94.1	98.4	93.6	98.4
Test Set	87.1	77.2	91.4	91.9	93.6	93.0	92.5	93.5	91.9
Entire Database	85.3	77.7	91.7	95.5	96.0	93.6	95.5	93.6	95.2



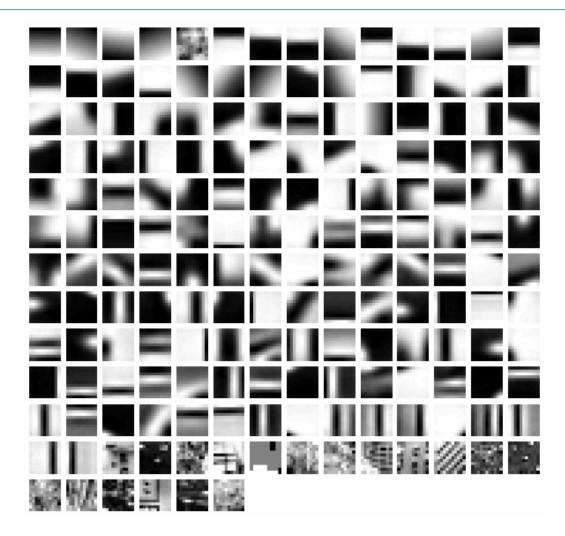
forest, indoor, city-panorama, city-street.

Caltech data set: 13 natural scene categories.

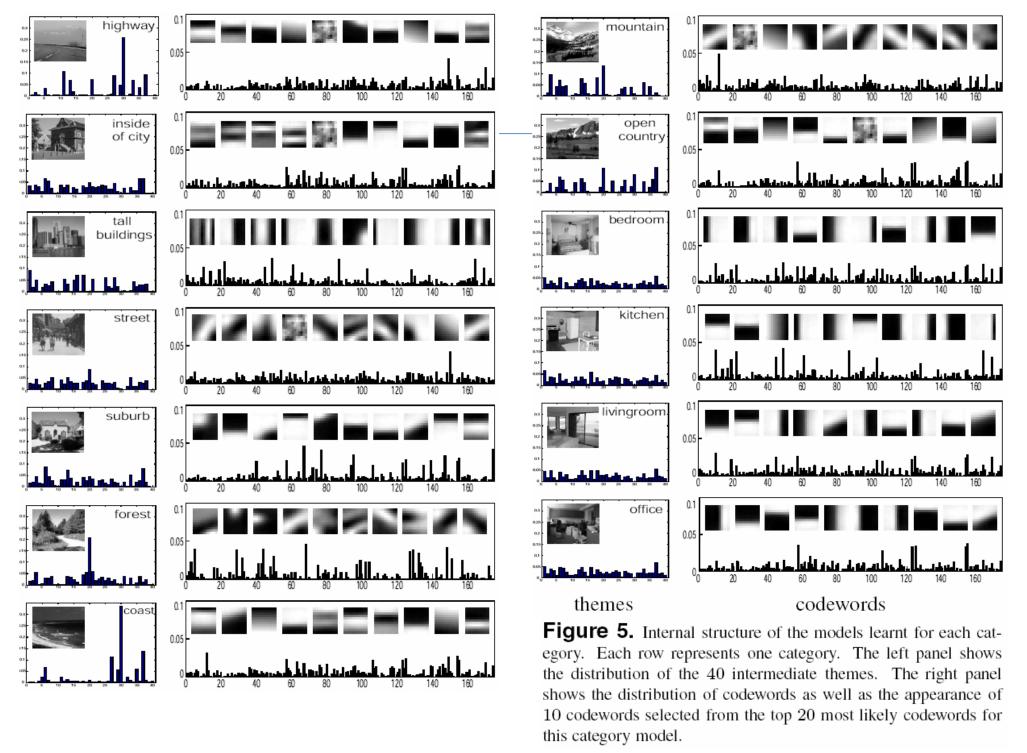
CS 484, Spring 2008 © 2008, Selim Aksoy 8



Flowchart from Fei-Fei Li, Pietro Perona, "A Bayesian hierarchical model for learning natural scene categories," IEEE CVPR, 2005.



A codebook obtained from 650 training examples from 13 categories. Image patches are detected by a sliding grid and random sampling of scales.



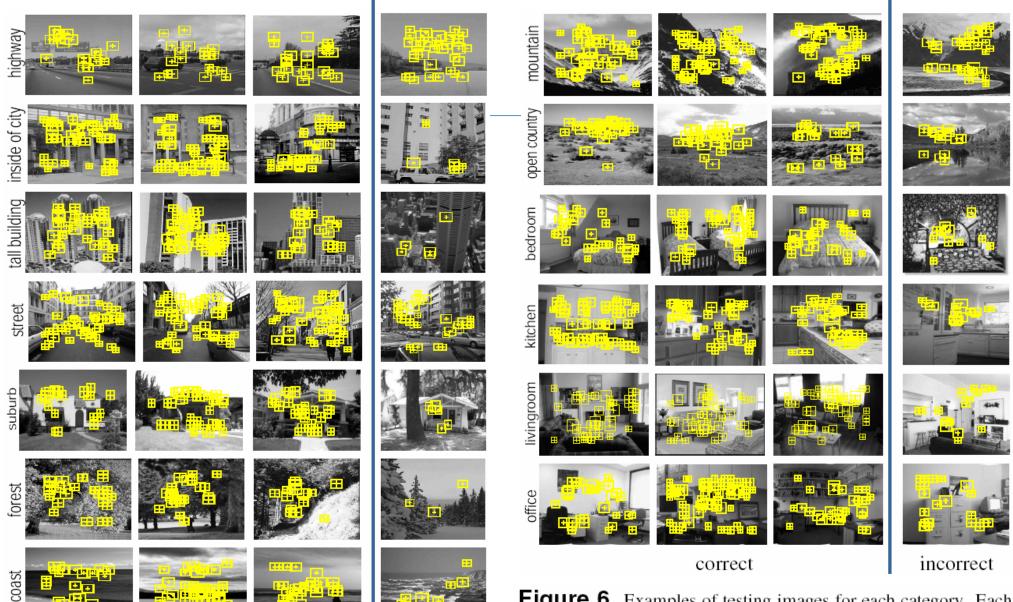


Figure 6. Examples of testing images for each category. Each row is for one category. The first 3 columns on the left show 3 examples of correctly recognized images, the last column on the right shows an example of incorrectly recognized image. Superimposed on each image, we show samples of patches that belong to the most significant set of codewords given the category model.

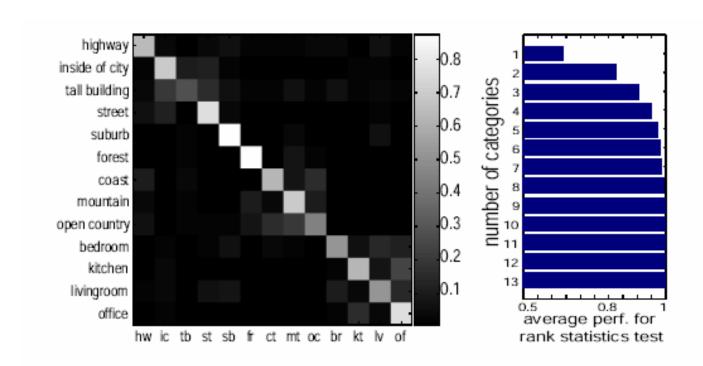
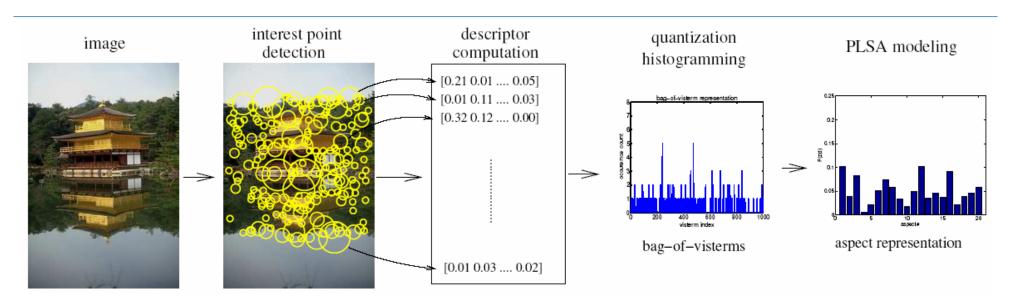


Figure 7. Left Panel. Confusion table of Theme Model 1 using 100 training and 50 test examples from each category, the grid detector and patch based representation. The average performance is 64.0%. Right Panel. Rank statistics of the confusion table, which shows the probability of a test scene correctly belong to one of the top N most probable categories. N ranges from 1 to 13.



Flowchart from Quelhas et al., "A thousand words in a scene," IEEE Trans. PAMI, 2007.

- Probabilistic Latent Semantic Analysis (PLSA) is used to learn aspect models to capture co-occurrences of visterms (visual terms).
- Bag-of-visterms representation or the aspect parameters are given as input to Support Vector Machines for classification.

	Classi	fication	(%)	Class.	# of
Gr. Truth	indoor	city	land.	Error (%)	images
indoor	89.7	9.0	1.3	10.3	2777
city	14.5	74.8	10.7	25.2	2505
landscape	1.2	2.0	96.8	3.1	4175

TABLE III

Confusion matrix for the three-class classification problem, using vocabulary V_{1000} .

Total class.	error	11.90	1.0)

	indoor	city	land.	class error(%)	# images
indoor	86.6	11.8	1.6	13.4	2777
city	14.8	75.4	9.8	24.5	2505
land.	1.3	1.9	96.8	3.1	4175

TABLE VIII

CLASSIFICATION ERROR AND CONFUSION MATRIX FOR THE THREE-CLASS PROBLEM USING PLSA, WITH V_{1000} AND 60 ASPECTS.

Total class. error rate: 20.8 (2.1) (Baseline: 30.1 (1.1))

	m.	f.	i.	ср.	cs.	error (%)	# of images
mount.	85.8	8.6	2.5	0.5	2.6	14.2	590
forest	8.9	80.3	1.6	2.4	6.7	19.7	492
indoor	0.4	0	91.1	0.4	8.1	8.9	2777
city-pan.	3.5	1.8	8.0	46.9	39.8	53.1	549
city-str.	2.0	2.2	20.8	6.0	68.9	31.1	1957

TABLE V

Classification rate and confusion matrix for the five-class, using BOV and vocabulary V_{1000} .

Total error rate (BOV: 20.8 (2.1), Baseline: 30.1 (1.1))

	m.	f.	i.	ср.	cs.	error (%)
mountain	85.5	12.2	0.8	0.3	1.2	14.5
forest	12.8	78.3	0.8	0.4	7.7	21.7
indoor	0.3	0.1	88.9	0.2	10.5	11.1
city-pan.	3.6	4.9	8.8	12.6	70.1	87.4
city-str.	1.6	1.4	20.4	1.7	74.9	25.1

TABLE X

CLASSIFICATION ERROR AND CONFUSION MATRIX FOR THE FIVE-CLASS PROBLEM USING PLSA-O WITH 60 ASPECTS.

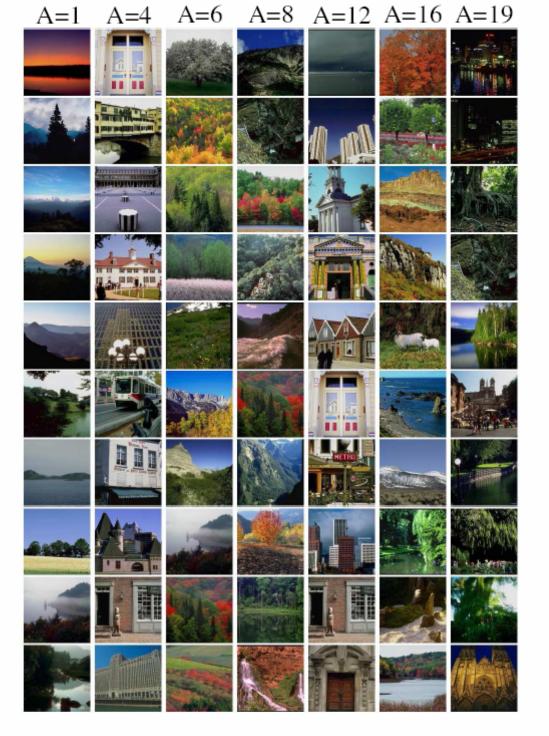
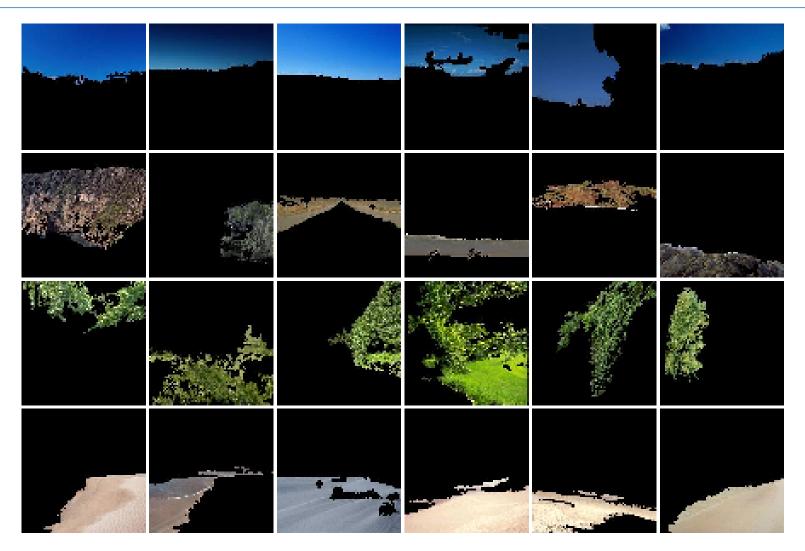


Fig. 7. The 10 most probable images from the D1 data set for seven aspects (out of 20) learned on the D3 data set.

- D. Gökalp, S. Aksoy, "Scene classification using bag-of-regions representations," IEEE CVPR, Beyond Patches Workshop, 2007.
 - Region segmentation
 - Region clustering → region codebook
 - Above-below spatial relationships → region pairs
 - Statistical region selection: identify region types that
 - are frequently found in a particular class of scenes but rarely exist in other classes, and
 - consistently occur together in the same class of scenes.
 - Bayesian scene classification using
 - bag of individual regions,
 - bag of region pairs.



Examples for region clusters. Each row represents a different cluster.

Table 3. Confusion matrix for the bag of individual regions representation after region selection.

				_	Assign	ned			Total	% Agree
		coast	forest	highway	insidecity	mountain	opencountry	street	Total	70 Agicc
	coast	38	2	2	1	3	4	0	50	76.00
	forest	4	36	0	0	7	2	1	50	72.00
	highway	2	2	32	6	0	2	6	50	64.00
True	insidecity	3	1	12	22	2	0	10	50	44.00
	mountain	2	3	5	0	32	6	2	50	64.00
	opencountry	9	8	3	1	14	14	1	50	28.00
	street	0	0	9	6	2	6	27	50	54.00
	Total	58	52	63	36	60	34	47	350	57.43

Table 4. Confusion matrix for the bag of region pairs representation after region selection.

			_		Assigr	ned			Total	% Agree
		coast	forest	highway	insidecity	mountain	opencountry	street	Total	70 Tigiec
	coast	42	0	0	1	3	4	0	50	84.00
	forest	1	38	0	2	4	4	1	50	76.00
	highway	1	1	31	4	2	2	9	50	62.00
True	insidecity	3	4	12	19	1	1	10	50	38.00
	mountain	1	5	0	0	40	3	1	50	80.00
	opencountry	8	5	1	2	9	25	0	50	50.00
	street	2	1	8	12	2	3	22	50	44.00
	Total	58	54	52	40	61	42	43	350	62.00



Examples for correctly classified scenes.

Examples for wrongly classified scenes.

Image classification using factor graphs

 Boutell et al., "Scene Parsing Using Region-Based Generative Models," IEEE Trans. Multimedia, 2007.

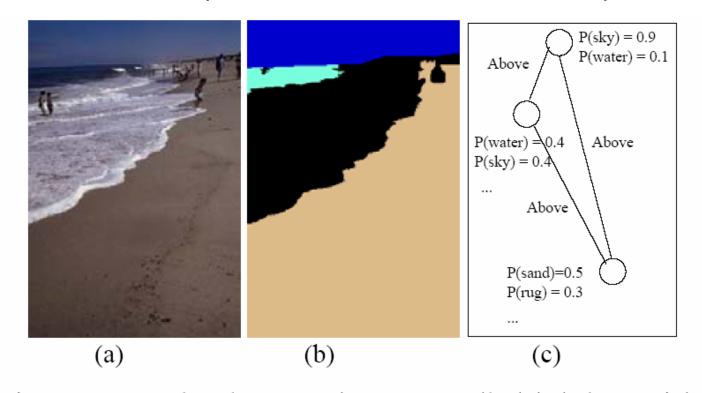


Figure 1. (a) A beach scene. (b) Its manually-labeled materials. The true configuration includes *sky above water*, *water above sand*, and *sky above sand*. (c) The underlying graph showing detector results and spatial relations.

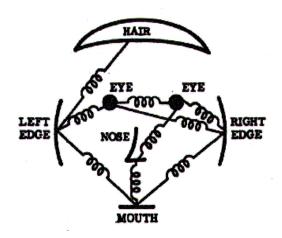
ICCV 2005 Beijing, Short Course, Oct 15

Recognizing and Learning Object Categories

Li Fei-Fei, UIUC Rob Fergus, MIT Antonio Torralba, MIT

Agenda

- Introduction
- Bag of words models
- Part-based models
- Discriminative methods
- Segmentation and recognition
- Conclusions





object

Search

Dictionary Thesaurus Encyclopedia

game.

ob·ject an Key (ŏb'jĭkt, -jĕkt') n.

1. Somethi perceptible ne or more of the senses, especial vision or touch; a

A focus d

3. The purpos

4. Grammar.

oun phrase that recei∨es or is affected by the ation of a ∨ within a a. A noun, pronoun, 🖜 sentence.

of a specific action or effort: the object

g, thought, or action: *an object of co*

b. A noun or substantive verned by a preposition.

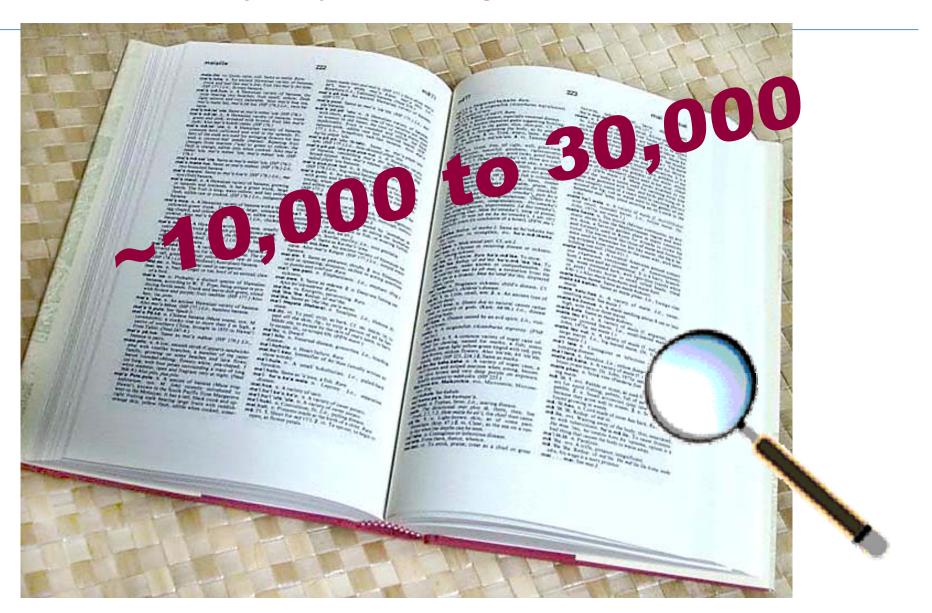
- Philosophy. Something int ible or perceptible by the mind.
- 6. Computer Science. A discrete item that can be selected and maneuvered, such as an onscreen graphic. In object-oriented programming, objects include data and the procedures necessary to operate on that data.

materia

thing

CS 484, Spring 2008 ©2008, Selim Aksoy 24

How many object categories are there?

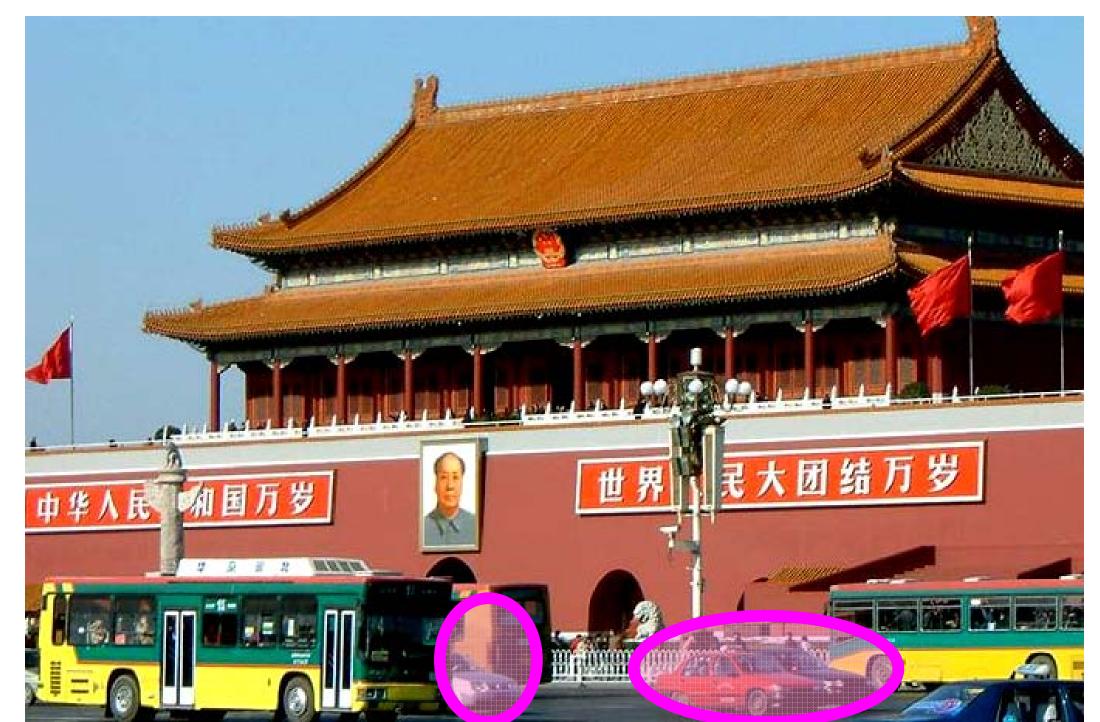


Biederman 1987

So what does object recognition involve?

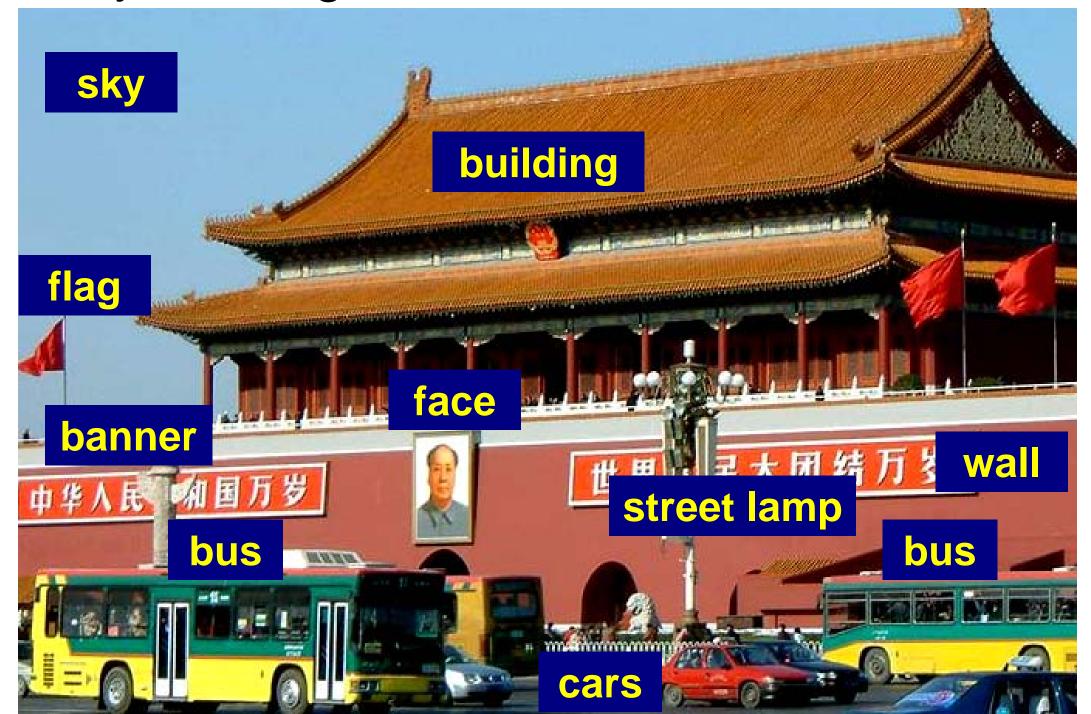
Verification: is that a bus?

Detection: are there cars?

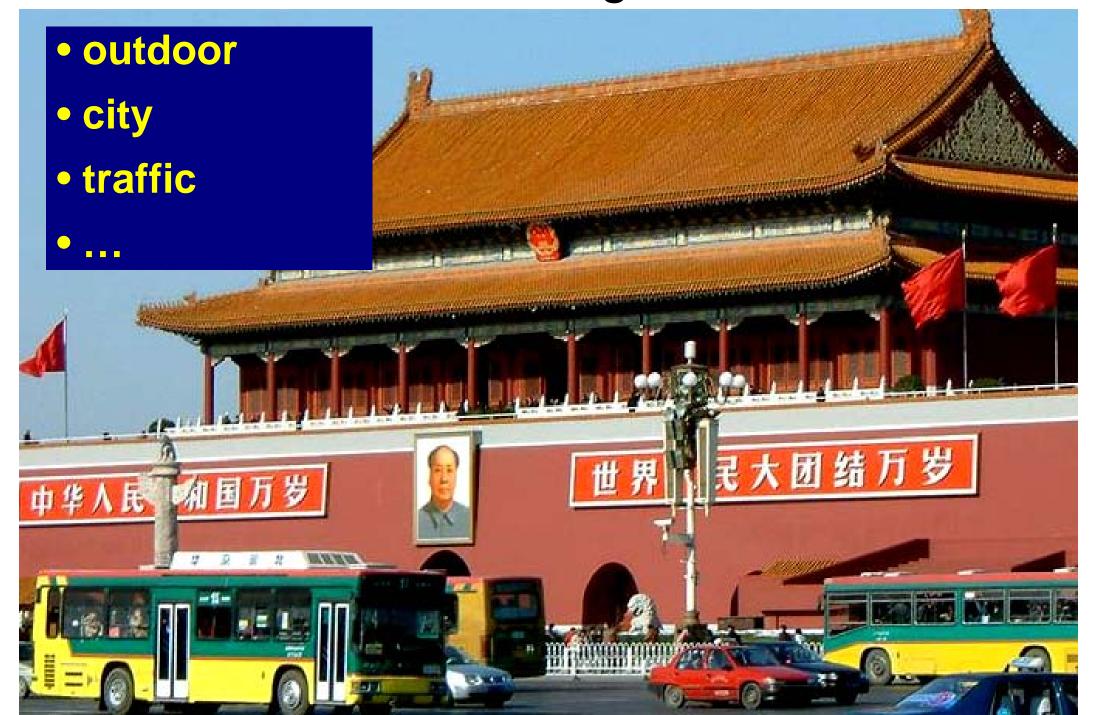


Identification: is that a picture of Mao?

Object categorization



Scene and context categorization

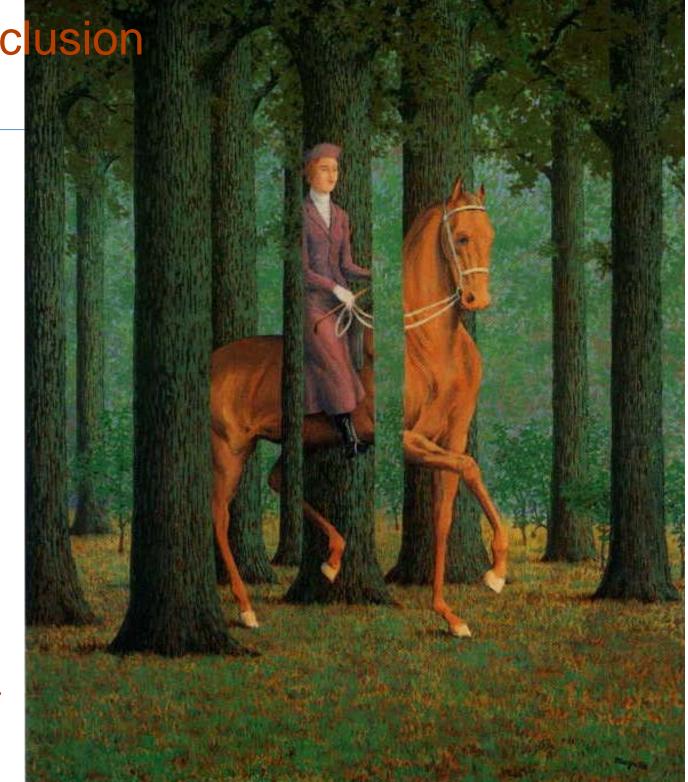


Challenges 1: view point variation

Challenges 2: illumination

slide credit: S. Ullman

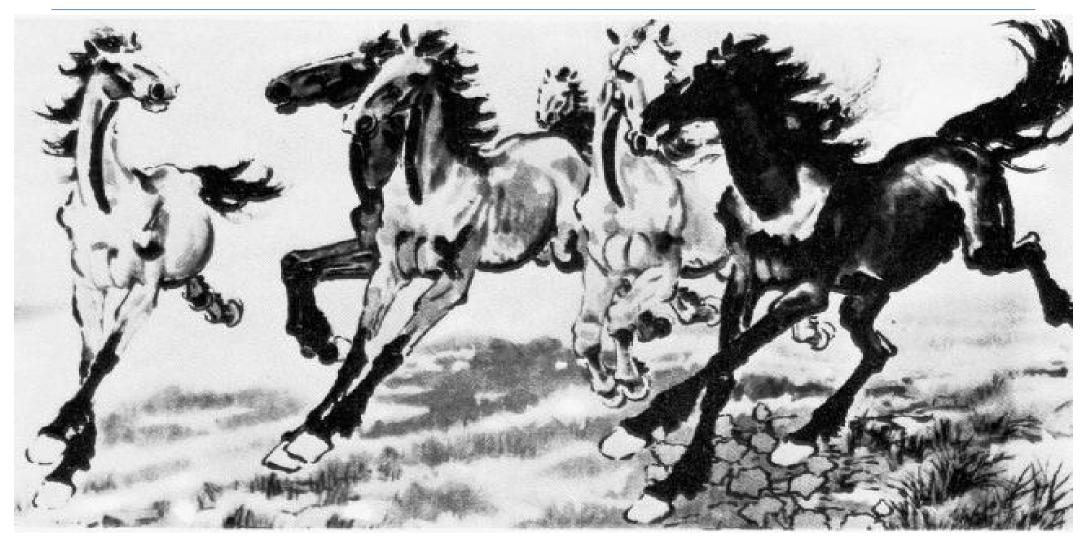
Challenges 3: occlusion



Magritte, 1957

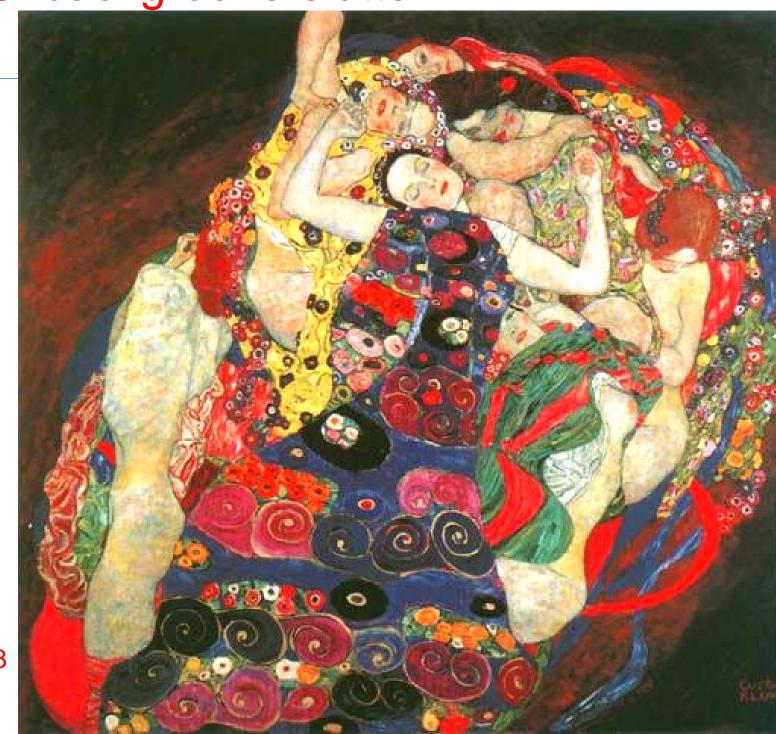
Challenges 4: scale

Challenges 5: deformation



Xu, Beihong 1943

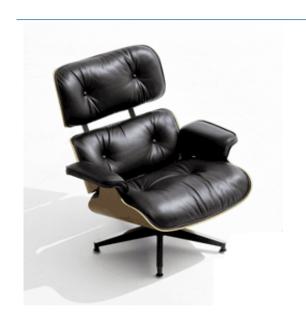
Challenges 6: background clutter

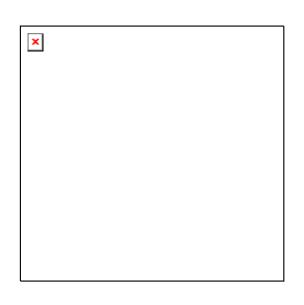


Klimt, 1913

History: single object recognition

Challenges 7: intra-class variation

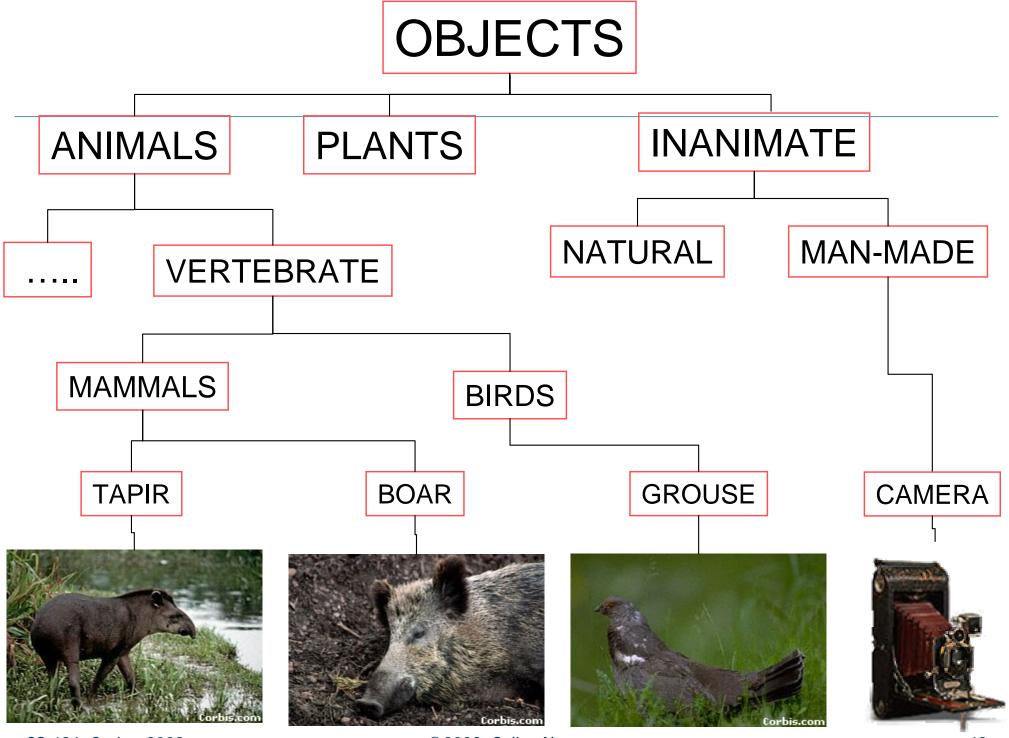




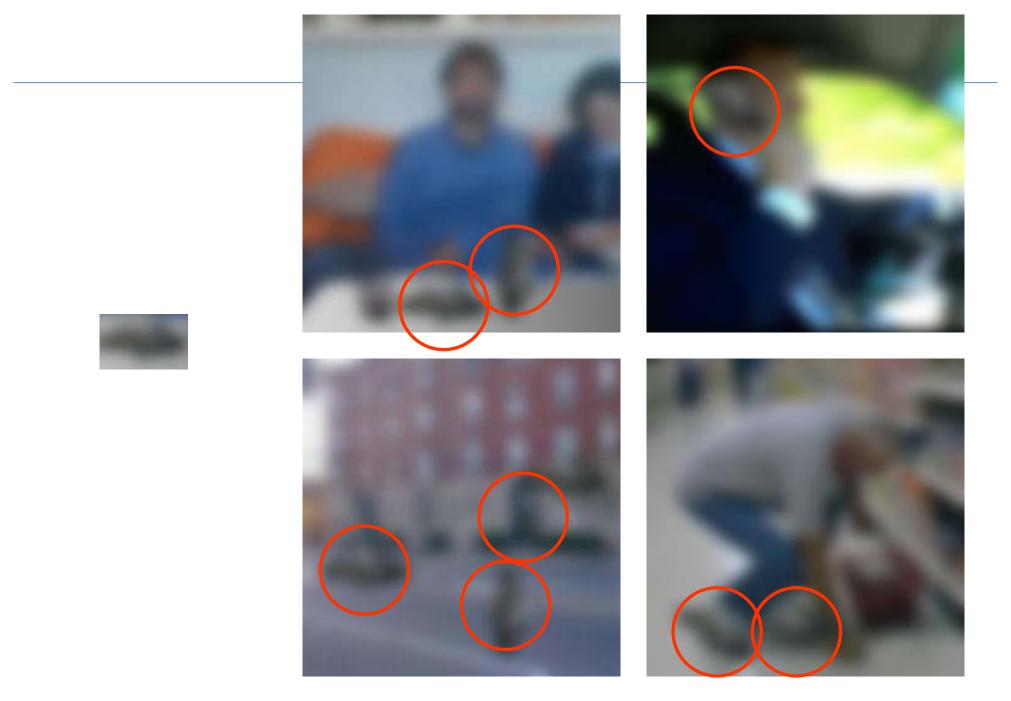
CS 484, Spring 2008

©2008, Selim Aksoy

History: early object categorization

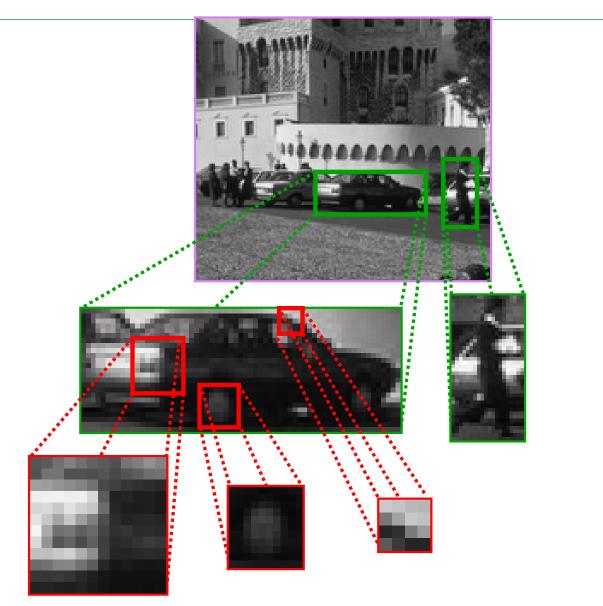


CS 484, Spring 2008 © 2008, Selim Aksoy 42



CS 484, Spring 2008 © 2008, Selim Aksoy 43

Scenes, Objects, and Parts



E. Sudderth, A. Torralba, W. Freeman, A. Willsky. ICCV 2005.

Object categorization: the statistical viewpoint

p(zebra | image)
vs.
p(no zebra/image)

Bayes rule:

$$\frac{p(zebra | image)}{p(no | zebra | image)} = \frac{p(image | zebra)}{p(image | no | zebra)} \cdot \frac{p(zebra)}{p(no | zebra)}$$

posterior ratio

likelihood ratio

prior ratio

Object categorization: the statistical viewpoint

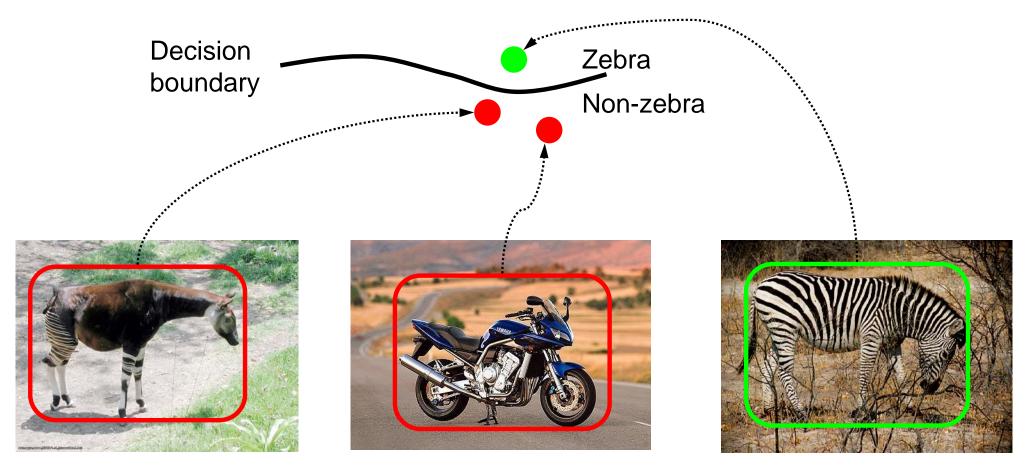
$$\frac{p(zebra \mid image)}{p(no \ zebra \mid image)} = \frac{p(image \mid zebra)}{p(image \mid no \ zebra)} \cdot \frac{p(zebra)}{p(no \ zebra)}$$
posterior ratio
likelihood ratio
prior ratio

- Discriminative methods model posterior
- Generative methods model likelihood and prior

Discriminative

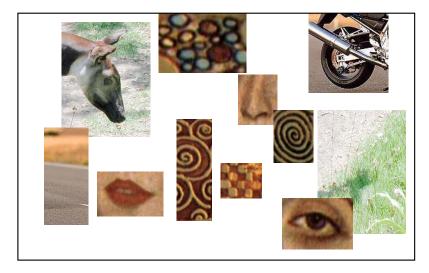
Direct modeling of

p(zebra | image) p(no zebra | image)



Generative

■ Model p(image | zebra) and p(image | no zebra)

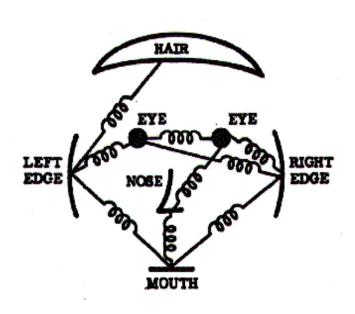


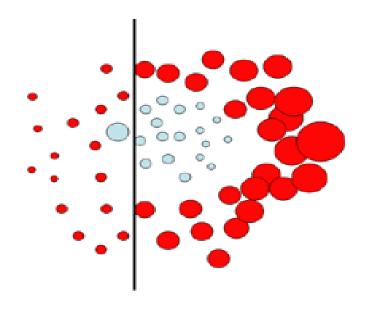
p(image zebra)	p(image no zebra)
Low	Middle
High 2008 © 2008, Selim	Middle→Low Aksoy

Three main issues

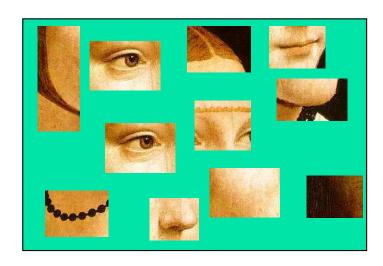
- Representation
 - How to represent an object category
- Learning
 - How to form the classifier, given training data
- Recognition
 - How the classifier is to be used on novel data

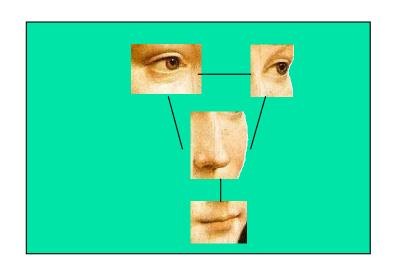
Generative / discriminative / hybrid



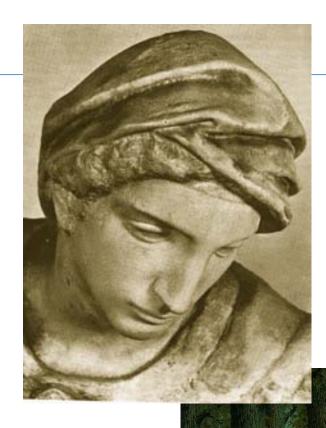


- Generative / discriminative / hybrid
- Appearance only or location and appearance

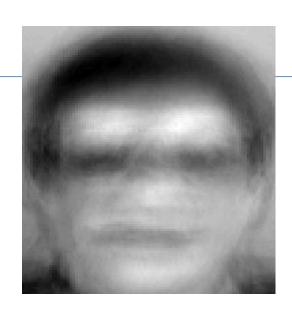


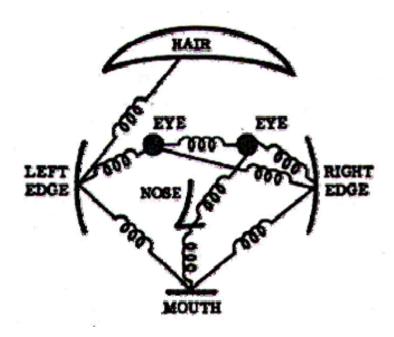


- Generative / discriminative / hybrid
- Appearance only or location and appearance
- Invariances
 - View point
 - Illumination
 - Occlusion
 - Scale
 - Deformation
 - Clutter
 - etc.

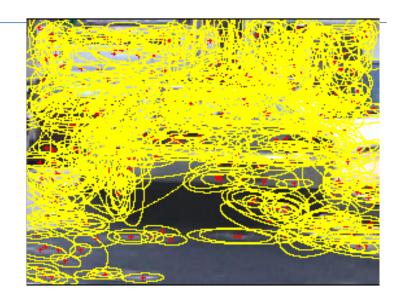


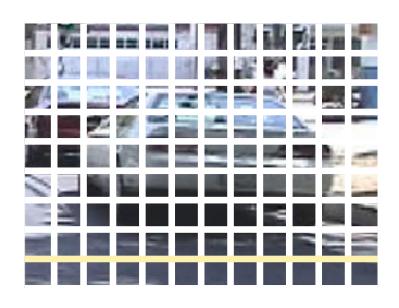
- Generative / discriminative / hybrid
- Appearance only or location and appearance
- invariances
- Part-based or global w/subwindow





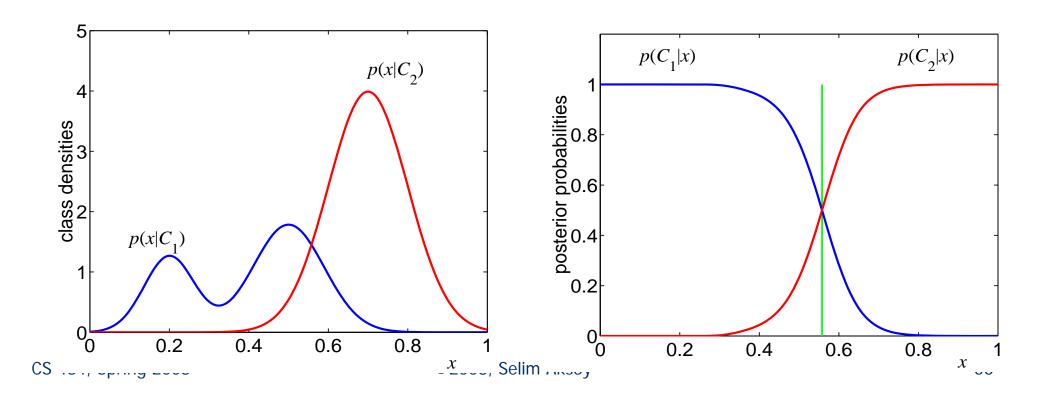
- Generative / discriminative / hybrid
- Appearance only or location and appearance
- invariances
- Parts or global w/subwindow
- Use set of features or each pixel in image





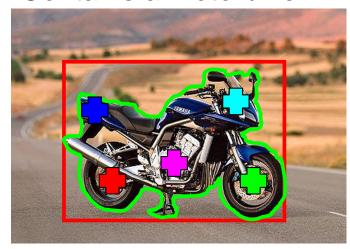
 Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning

- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- Methods of training: generative vs. discriminative



- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- What are you maximizing? Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels

Contains a motorbike



- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- What are you maximizing? Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels
- Batch/incremental (on category and image level; user-feedback)

- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- What are you maximizing? Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels
- Batch/incremental (on category and image level; user-feedback)
- Training images:
 - Issue of overfitting
 - Negative images for discriminative methods

- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- What are you maximizing? Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels
- Batch/incremental (on category and image level; user-feedback)
- Training images:
 - Issue of overfitting
 - Negative images for discriminative methods
- Priors

Recognition

- Scale / orientation range to search over
- Speed

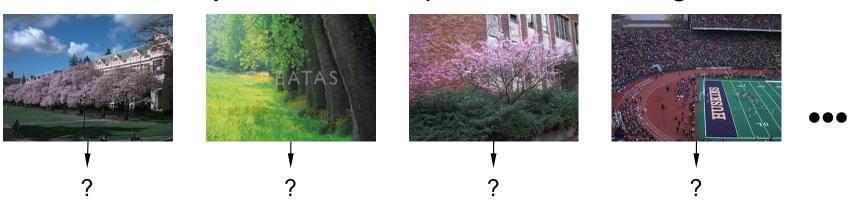
Object Class Recognition using Images of Abstract Regions

Yi Li, Jeff A. Bilmes, and Linda G. Shapiro
Department of Computer Science and Engineering
Department of Electrical Engineering
University of Washington

Problem Statement

Given: Some images and their corresponding descriptions

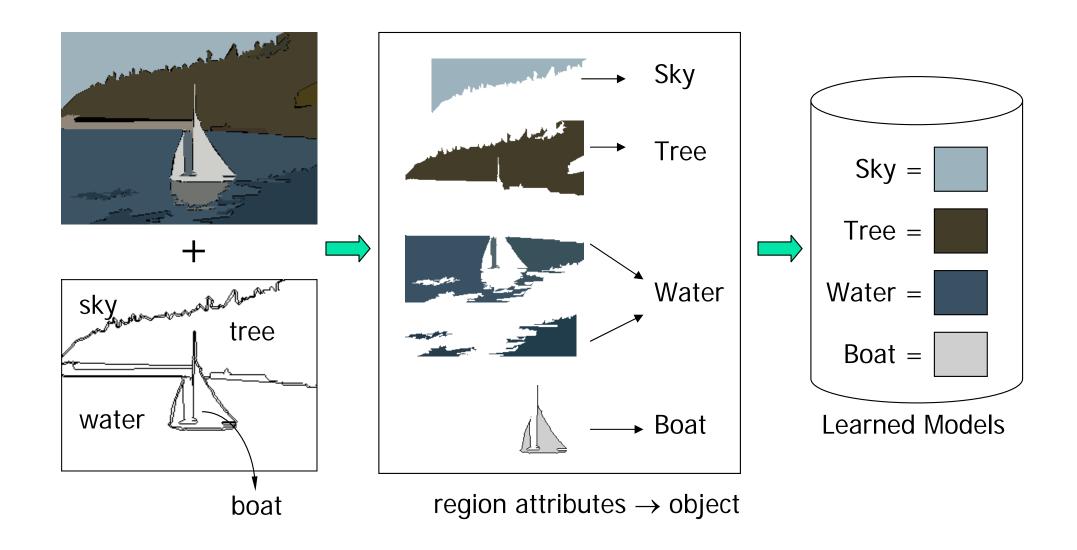
To solve: What object classes are present in new images



Abstract Regions

Line Clusters Original Images **Color Regions Texture Regions**

Object Model Learning (Ideal)



Our Scenario: Abstract Regions

Multiple segmentations whose regions are not labeled; a list of labels is provided for each training image.

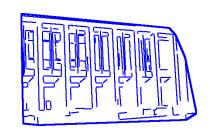
image

various different segmentations

region attributes from several different types of regions

labels

{sky, building}



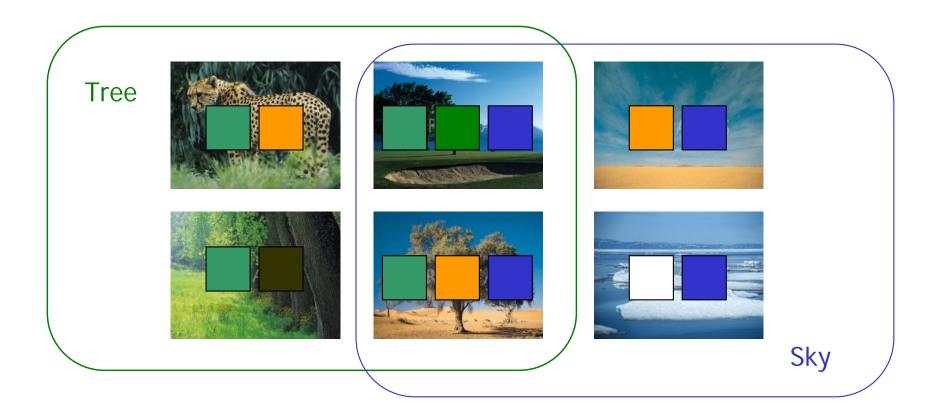
Object Model Learning

Assumptions

- The feature distribution of each object within a region is a Gaussian;
- Each image is a set of regions;
 each region can be modeled as a mixture of multivariate Gaussian distributions.

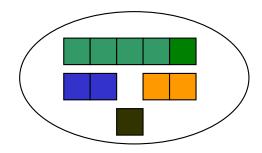
Model Initial Estimation

 Estimate the initial model of an object using all the region features from all images that contain the object

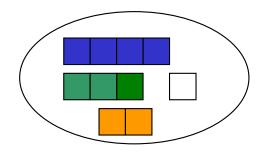


Expectation-Maximization

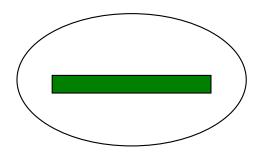
Initial Model for "trees"



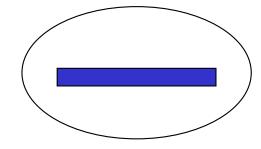
Initial Model for "sky"



Final Model for "trees"



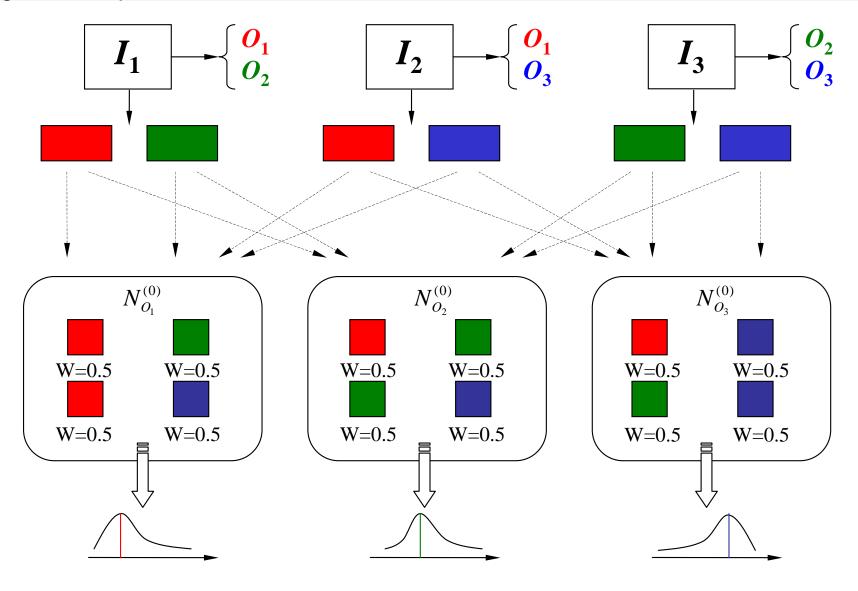
Final Model for "sky"

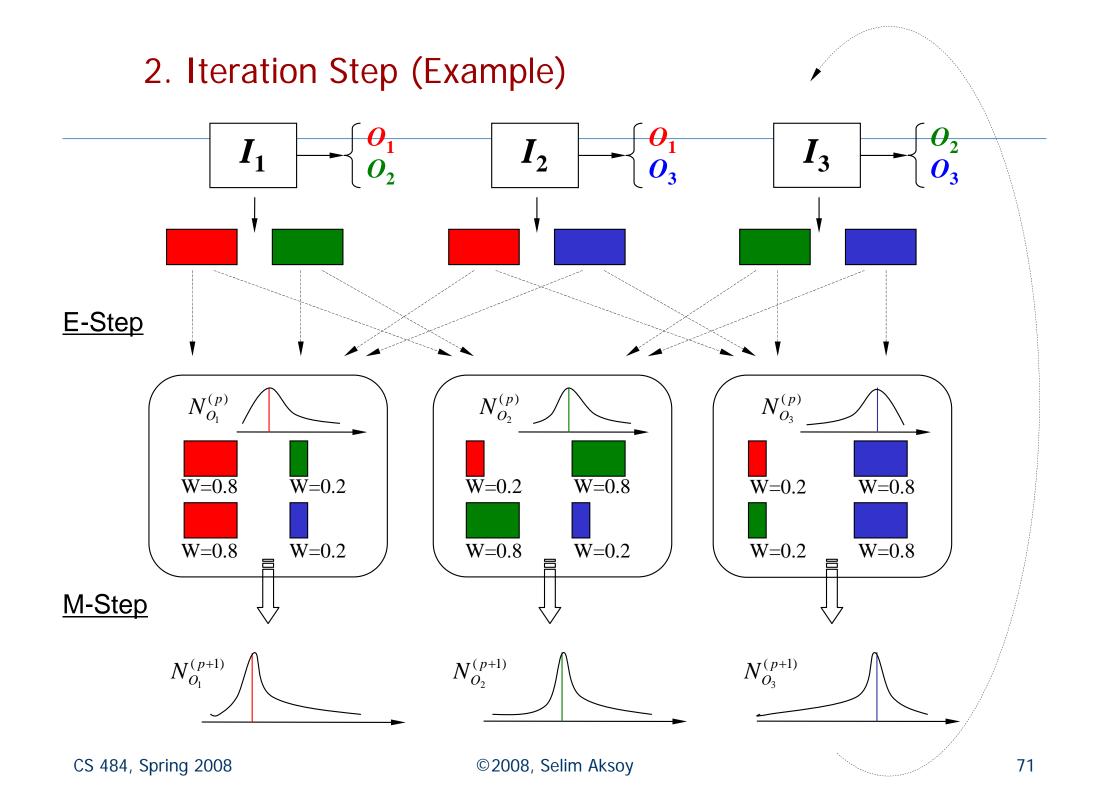


EM

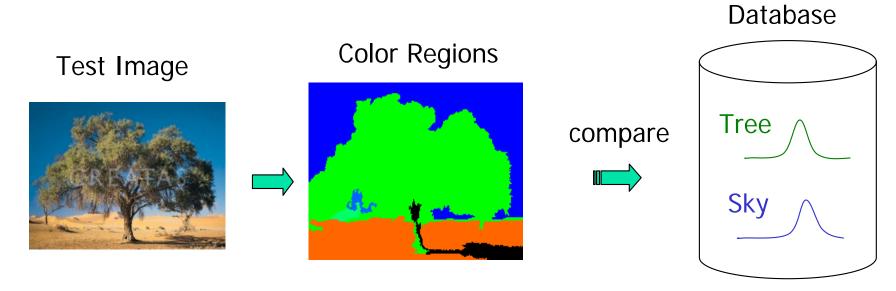
1. Initialization Step (Example)

Image & description





Recognition



To calculate $p(tree \mid image)$

$$p(tree \mid image) = f \begin{pmatrix} p(tree \mid f) \\ \end{pmatrix}$$

$$p(o | F_I^a) = \int_{r^a \in F_I^a} (p(o | r^a))$$

Object Model

Combining different abstract regions

 Treat the different types of regions independently and combine at the time of classification.

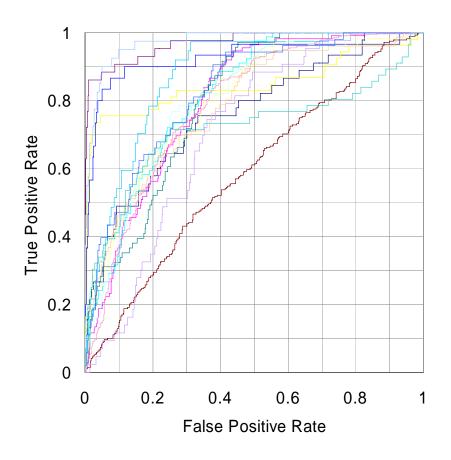
$$p(o | \{F_I^a\}) = \prod_a p(o | F_I^a)$$

 Form intersections of the different types of regions, creating smaller regions that have both color and texture properties for classification.

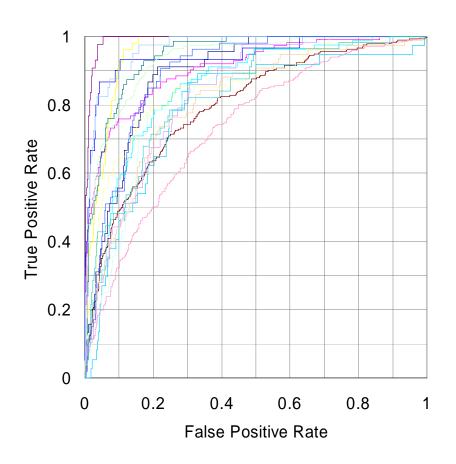
Experiments (on 860 images)

- 18 keywords: mountains (30), orangutan (37), track (40), tree trunk (43), football field (43), beach (45), prairie grass (53), cherry tree (53), snow (54), zebra (56), polar bear (56), lion (71), water (76), chimpanzee (79), cheetah (112), sky (259), grass (272), tree (361).
- A set of cross-validation experiments (80% as training set and the other 20% as test set)
- The poorest results are on object classes "tree," "grass," and "water," each of which has a high variance; a single Gaussian model is insufficient.

ROC Charts



Independent Treatment of Color and Texture



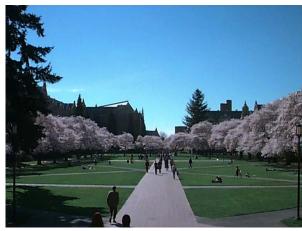
Using Intersections of Color and Texture Regions

Sample Results

cheetah

Sample Results (Cont.)

grass



Sample Results (Cont.)

cherry tree

Sample Results (Cont.)

lion



Summary

- Designed a set of abstract region features: color, texture, structure, . . .
- Developed a new semi-supervised EM-like algorithm to recognize object classes in color photographic images of outdoor scenes; tested on 860 images.
- Compared two different methods of combining different types of abstract regions. The intersection method had a higher performance

Groundtruth Data Set

- UW Ground truth database (1224 images)
- 31 elementary object categories: river (30), beach (31), bridge (33), track (35), pole (38), football field (41), frozen lake (42), lantern (42), husky stadium (44), hill (49), cherry tree (54), car (60), boat (67), stone (70), ground (81), flower (85), lake (86), sidewalk (88), street (96), snow (98), cloud (119), rock (122), house (175), bush (178), mountain (231), water (290), building (316), grass (322), people (344), tree (589), sky (659)
- 20 high-level concepts: Asian city, Australia, Barcelona, campus, Cannon Beach, Columbia Gorge, European city, Geneva, Green Lake, Greenland, Indonesia, indoor, Iran, Italy, Japan, park, San Juans, spring flowers, Swiss mountains, and Yellowstone.

beach, sky, tree, water

people, street, tree

building, grass, people, sidewalk, sky, tree

building, bush, sky, tree, water

flower, house, people, pole, sidewalk, sky

flower, grass, house, pole, sky, street, tree

building, flower, sky, tree, water

boat, rock, sky, tree, water

building, car, people, tree

car, people, sky

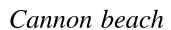
boat, house, water

Groundtruth Data Set: ROC Scores

street	60.4	tree	80.8	stone	87.1	columbia gorge	94.5
people	68.0	bush	81.0	hill	87.4	green lake	94.9
rock	73.5	flower	81.1	mountain	88.3	italy	95.1
sky	74.1	iran	82.2	beach	89.0	swiss moutains	95.7
ground	74.3	bridge	82.7	snow	92.0	sanjuans	96.5
river	74.7	car	82.9	lake	92.8	cherry tree	96.9
grass	74.9	pole	83.3	frozen lake	92.8	indoor	97.0
building	75.4	yellowstone	83.7	japan	92.9	greenland	98.7
cloud	75.4	water	83.9	campus	92.9	cannon beach	99.2
boat	76.8	indonesia	84.3	barcelona	92.9	track	99.6
lantern	78.1	sidewalk	85.7	geneva	93.3	football field	99.8
australia	79.7	asian city	86.7	park	94.0	husky stadium	100.0
house	80.1	european city	87.0	spring flowers	94.4		

Groundtruth Data Set: Top Results

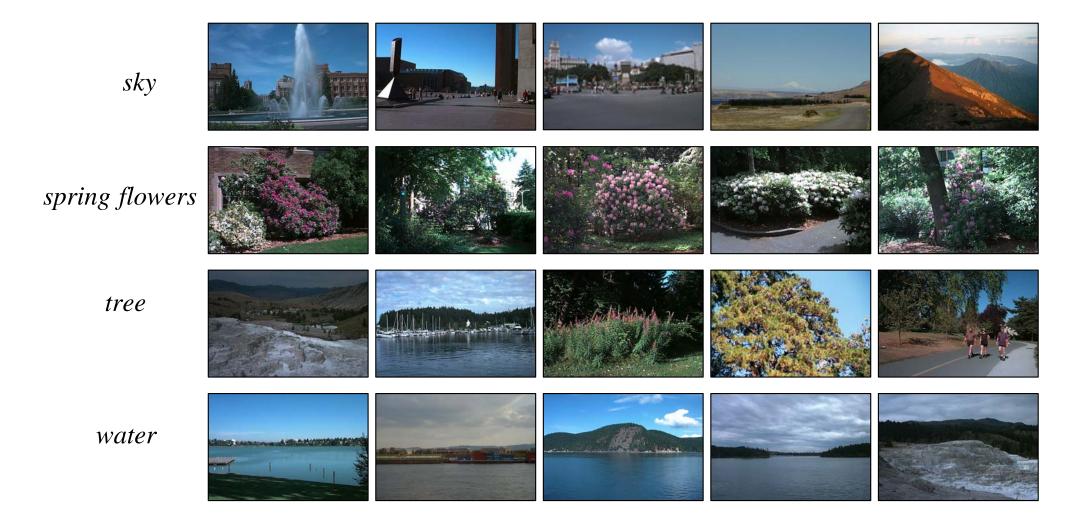
Asian city



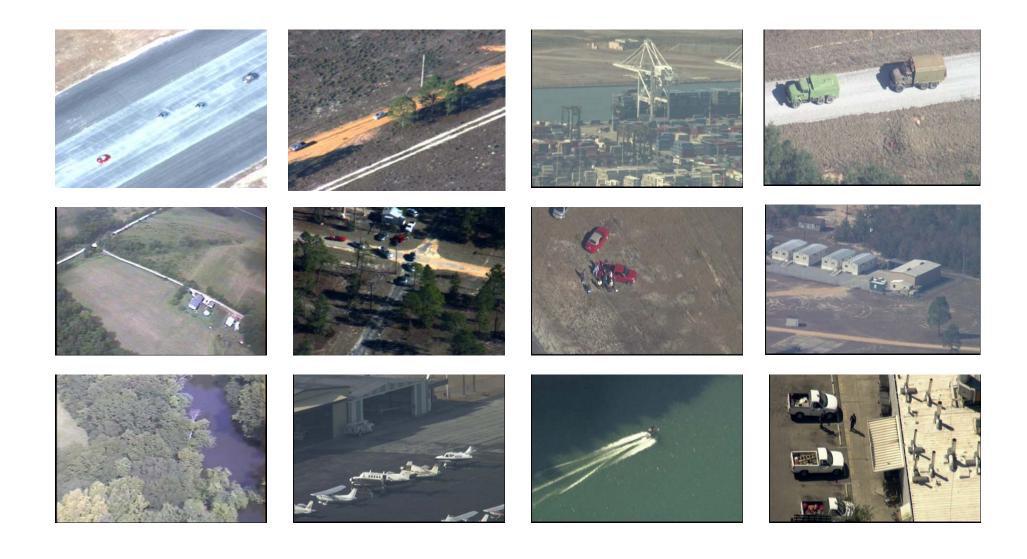
Italy

park

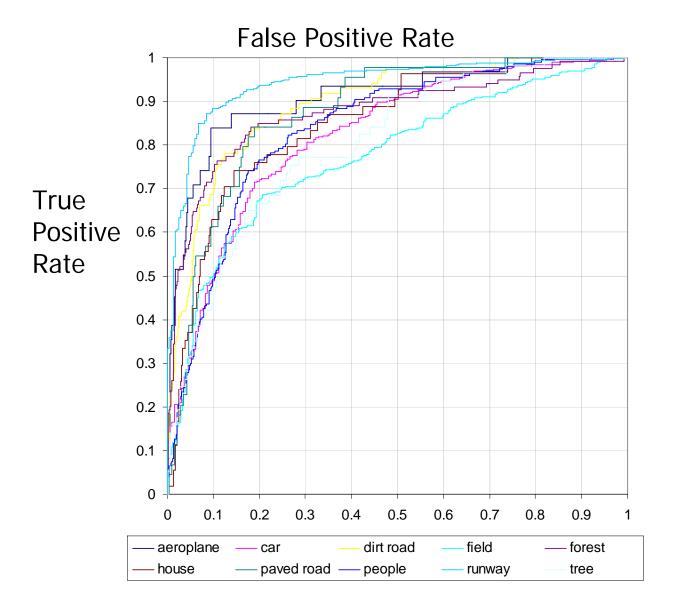
Groundtruth Data Set: Top Results



VACE Test Image Set (828 images and 10 object classes): from Boeing, VIVID, and NGA videos



Experiments: ROC Curves



field	77.5
tree	80.6
car	82.3
people	83.9
house	84.9
paved road	87.5
forest	87.6
dirt road	89.5
airplane	91.1
runway	94.4

Objects detected in frames

forest(94.37) house(64.09) car(46.5) dirt road(23.44) paved road(4.77) tree(2.29) airplane(1.47) runway(0.03) field(0.02) people(0)

runway(100) **car**(99.23) **field**(98.07) dirt road(92.1) house(85.24) tree(19.43) paved road(5.77) airplane(3.56) forest(2.85) people(0.07)

runway(99.98) **field**(98.66) **car**(96.24) people(10.04) airplane(2.74) paved road(2.39) forest(0.82) house(0.48) dirt road(0.41) tree(0)

runway(99.98) car(99.84) field(99.27) paved road(18.28) people(13.13) tree(8.71) airplane(7.94) forest(1.67) house(0.14) dirt road(0.08)

car(94.3) **dirt road**(91.7) **field**(16.17) tree(14.23) paved road(5.34) airplane(5.17) people(3.91) forest(0.53) house(0.47) runway(0.41)

car(97.92) **forest**(94.2) **paved road**(85) **dirt road**(72.94) tree(68.84) airplane(39.13) house(33.17) people(12.97) field(2.38) runway(0.04)