
Edge Detection

Selim Aksoy
Department of Computer Engineering

Bilkent University
saksoy@cs.bilkent.edu.tr

CS 484, Spring 2008 ©2008, Selim Aksoy 2

Edge detection

Edge detection is the process of finding
meaningful transitions in an image.
The points where sharp changes in the brightness
occur typically form the border between different
objects or scene parts.
These points can be detected by computing
intensity differences in local image regions.
Initial stages of mammalian vision systems also
involve detection of edges and local features.

CS 484, Spring 2008 ©2008, Selim Aksoy 3

Edge detection

Sharp changes in the image brightness occur at:
Object boundaries

A light object may lie on a dark background or a dark object
may lie on a light background.

Reflectance changes
May have quite different characteristics - zebras have stripes,
and leopards have spots.

Cast shadows
Sharp changes in surface orientation

Further processing of edges into lines, curves and
circular arcs result in useful features for matching
and recognition.

CS 484, Spring 2008 ©2008, Selim Aksoy 4

Edge detection

Basic idea: look for a neighborhood with strong
signs of change.
Problems:

Neighborhood size
How to detect change

Differential operators:
Attempt to approximate the gradient at a pixel via
masks.
Threshold the gradient to select the edge pixels.

81 82 26 24
82 33 25 25
81 82 26 24

CS 484, Spring 2008 ©2008, Selim Aksoy 5

Edge models

CS 484, Spring 2008 ©2008, Selim Aksoy 6

Difference operators for 1D

Adapted from Gonzales and Woods

CS 484, Spring 2008 ©2008, Selim Aksoy 7

Difference operators for 1D

Adapted from Gonzales and Woods

CS 484, Spring 2008 ©2008, Selim Aksoy 8

Edge detection

Three fundamental steps in edge detection:
1. Image smoothing: to reduce the effects of

noise.
2. Detection of edge points: to find all image

points that are potential candidates to become
edge points.

3. Edge localization: to select from the candidate
edge points only the points that are true
members of an edge.

CS 484, Spring 2008 ©2008, Selim Aksoy 9

Difference operators for 1D

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 10

Difference operators for 1D

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 11

Observations

Properties of derivative masks:
Coordinates of derivative masks have opposite signs in
order to obtain a high response in signal regions of high
contrast.
The sum of coordinates of derivative masks is zero so
that a zero response is obtained on constant regions.
First derivative masks produce high absolute values at
points of high contrast.
Second derivative masks produce zero-crossings at
points of high contrast.

CS 484, Spring 2008 ©2008, Selim Aksoy 12

Smoothing operators for 1D

CS 484, Spring 2008 ©2008, Selim Aksoy 13

Observations

Properties of smoothing masks:
Coordinates of smoothing masks are positive and sum
to one so that output on constant regions is the same
as the input.
The amount of smoothing and noise reduction is
proportional to the mask size.
Step edges are blurred in proportion to the mask size.

CS 484, Spring 2008 ©2008, Selim Aksoy 14

Difference operators for 2D

CS 484, Spring 2008 ©2008, Selim Aksoy 15

Difference operators for 2D

CS 484, Spring 2008 ©2008, Selim Aksoy 16

Difference operators for 2D

Adapted from Gonzales and Woods

CS 484, Spring 2008 ©2008, Selim Aksoy 17

Difference operators for 2D

original image gradient thresholded
magnitude gradient

magnitude

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 18

Difference operators for 2D

CS 484, Spring 2008 ©2008, Selim Aksoy 19

Difference operators for 2D

CS 484, Spring 2008 ©2008, Selim Aksoy 20

Difference operators for 2D

CS 484, Spring 2008 ©2008, Selim Aksoy 21

Gaussian smoothing and edge detection

We can smooth the image using a Gaussian filter
and then compute the derivative.
Two convolutions: one to smooth, then another
one to differentiate?

Actually, no - we can use a derivative of
Gaussian filter because differentiation is
convolution and convolution is associative.

CS 484, Spring 2008 ©2008, Selim Aksoy 22

Derivative of Gaussian

Adapted from Michael Black, Brown University

CS 484, Spring 2008 ©2008, Selim Aksoy 23

Derivative of Gaussian

Adapted from Michael Black, Brown University

CS 484, Spring 2008 ©2008, Selim Aksoy 24

Derivative of Gaussian

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 25

Difference operators for 2D

CS 484, Spring 2008 ©2008, Selim Aksoy 26

Gaussian smoothing and edge detection

CS 484, Spring 2008 ©2008, Selim Aksoy 27

Gaussian smoothing and edge detection

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 28

Gaussian smoothing and edge detection

Adapted from Steve Seitz, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 29

Laplacian of Gaussian

Adapted from Gonzales and Woods

CS 484, Spring 2008 ©2008, Selim Aksoy 30

Laplacian of Gaussian

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 31

Laplacian of Gaussian

sigma=2

sigma=4

Gradient threshold=1 Gradient threshold=4

LoG zero crossings

Adapted from David Forsyth, UC Berkeley

CS 484, Spring 2008 ©2008, Selim Aksoy 32

Marr/Hildreth edge detector

1. First smooth the image via a Gaussian
convolution.

2. Apply a Laplacian filter (estimate 2nd derivative).
3. Find zero crossings of the Laplacian of the

Gaussian.

This can be done at multiple scales by varying σ
in the Gaussian filter.

CS 484, Spring 2008 ©2008, Selim Aksoy 33

Marr/Hildreth edge detector

CS 484, Spring 2008 ©2008, Selim Aksoy 34

Haralick edge detector

1. Fit the gray-tone intensity surface to a piecewise
cubic polynomial approximation.

2. Use the approximation to find zero crossings of
the second directional derivative in the direction
that maximizes the first directional derivative.

The derivatives here are calculated from direct
mathematical expressions with respect to the
cubic polynomial.

CS 484, Spring 2008 ©2008, Selim Aksoy 35

Canny edge detector

Canny defined three objectives for edge
detection:
1. Low error rate: All edges should be found and there

should be no spurious responses.
2. Edge points should be well localized: The edges

located must be as close as possible to the true edges.
3. Single edge point response: The detector should

return only one point for each true edge point. That is,
the number of local maxima around the true edge
should be minimum.

CS 484, Spring 2008 ©2008, Selim Aksoy 36

Canny edge detector

1. Smooth the image with a Gaussian filter with
spread σ.

2. Compute gradient magnitude and direction at
each pixel of the smoothed image.

3. Zero out any pixel response less than or equal to
the two neighboring pixels on either side of it,
along the direction of the gradient (non-maxima
suppression).

4. Track high-magnitude contours using
thresholding (hysteresis thresholding).

5. Keep only pixels along these contours, so weak
little segments go away.

CS 484, Spring 2008 ©2008, Selim Aksoy 37

Canny edge detector
Non-maxima suppression:

Gradient direction is used to
thin edges by suppressing
any pixel response that is
not higher than the two
neighboring pixels on either
side of it along the direction
of the gradient.
This operation can be used
with any edge operator
when thin boundaries are
wanted.

Note: Brighter squares illustrate
stronger edge response.

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 38

Canny edge detector

At q, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.

Adapted from David Forsyth, UC Berkeley

CS 484, Spring 2008 ©2008, Selim Aksoy 39

Canny edge detector

Hysteresis thresholding:
Once the gradient magnitudes are thinned, high
magnitude contours are tracked.
In the final aggregation phase, continuous contour
segments are sequentially followed.
Contour following is initiated only on edge pixels where
the gradient magnitude meets a high threshold.
However, once started, a contour may be followed
through pixels whose gradient magnitude meet a lower
threshold (usually about half of the higher starting
threshold).

CS 484, Spring 2008 ©2008, Selim Aksoy 40

Canny edge detector

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 41

Canny edge detector

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 42

Canny edge detector

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 43

Canny edge detector

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 44

Canny edge detector

CS 484, Spring 2008 ©2008, Selim Aksoy 45

Canny edge detector

CS 484, Spring 2008 ©2008, Selim Aksoy 46

Canny edge detector

The Canny operator gives single-pixel-wide
images with good continuation between adjacent
pixels.
It is the most widely used edge operator today;
no one has done better since it came out in the
late 80s. Many implementations are available.
It is very sensitive to its parameters, which need
to be adjusted for different application domains.

CS 484, Spring 2008 ©2008, Selim Aksoy 47

Edge linking

Hough transform
Finding line segments
Finding circles

Model fitting
Fitting line segments
Fitting ellipses

Edge tracking

CS 484, Spring 2008 ©2008, Selim Aksoy 48

Hough transform

The Hough transform is a method for detecting
lines or curves specified by a parametric function.
If the parameters are p1, p2, … pn, then the
Hough procedure uses an n-dimensional
accumulator array in which it accumulates votes
for the correct parameters of the lines or curves
found on the image.

y = mx + b

image m

b

accumulator

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 49

Hough transform: line segments

Adapted from Steve Seitz, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 50

Hough transform: line segments

Adapted from Steve Seitz, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 51

Hough transform: line segments

Adapted from Gonzales and Woods

CS 484, Spring 2008 ©2008, Selim Aksoy 52

Hough transform: line segments

y = mx + b is not suitable (why?)
The equation generally used is:

d = r sin(θ) + c cos(θ).

d

θ

r

c

d is the distance from the line to origin.

θ is the angle the perpendicular makes
with the column axis.

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 53

Hough transform: line segments

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 54

Hough transform: line segments

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 55

Hough transform: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 56

Hough transform: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 57

Hough transform: line segments

Extracting the line segments from the
accumulators:

1. Pick the bin of A with highest value V
2. While V > value_threshold {

1. order the corresponding pointlist from PTLIST
2. merge in high gradient neighbors within 10 degrees
3. create line segment from final point list
4. zero out that bin of A
5. pick the bin of A with highest value V

}
Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 58

Hough transform: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 59

Hough transform: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 60

Hough transform: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 61

Hough transform: circles

Main idea: The gradient vector at an edge pixel
points the center of the circle.
Circle equations:

r = r0 + d sin(θ) r0, c0, d are parameters
c = c0 + d cos(θ)

*(r,c)
d

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 62

Hough transform: circles

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 63

Hough transform: circles

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 64

Hough transform: circles

Adapted from Shapiro and Stockman

CS 484, Spring 2008 ©2008, Selim Aksoy 65

Model fitting
Mathematical models that fit data not only reveal
important structure in the data, but also can provide
efficient representations for further analysis.
Mathematical models exist for lines, circles, cylinders, and
many other shapes.
We can use the method of least squares for determining
the parameters of the best mathematical model fitting
observed data.

CS 484, Spring 2008 ©2008, Selim Aksoy 66

Model fitting: line segments

Adapted from Martial Hebert, CMU

CS 484, Spring 2008 ©2008, Selim Aksoy 67

Model fitting: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 68

Model fitting: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 69

Model fitting: line segments

CS 484, Spring 2008 ©2008, Selim Aksoy 70

Model fitting: line segments

Problems in fitting:
Outliers
Error definition (algebraic vs. geometric distance)
Statistical interpretation of the error (hypothesis
testing)
Nonlinear optimization
High dimensionality (of the data and/or the number of
model parameters)
Additional fit constraints

CS 484, Spring 2008 ©2008, Selim Aksoy 71

Model fitting: ellipses

CS 484, Spring 2008 ©2008, Selim Aksoy 72

Model fitting: ellipses

Adapted from Andrew Fitzgibbon, PAMI 1999

CS 484, Spring 2008 ©2008, Selim Aksoy 73

Model fitting: ellipses

Adapted from Andrew Fitzgibbon, PAMI 1999

CS 484, Spring 2008 ©2008, Selim Aksoy 74

Model fitting: incremental line fitting

Adapted from David Forsyth, UC Berkeley

CS 484, Spring 2008 ©2008, Selim Aksoy 75

Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT

CS 484, Spring 2008 ©2008, Selim Aksoy 76

Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT

CS 484, Spring 2008 ©2008, Selim Aksoy 77

Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT

CS 484, Spring 2008 ©2008, Selim Aksoy 78

Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT

CS 484, Spring 2008 ©2008, Selim Aksoy 79

Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT

CS 484, Spring 2008 ©2008, Selim Aksoy 80

Edge tracking

Mask-based approach uses masks to identify the
following events:

start of a new segment,
interior point continuing a segment,
end of a segment,
junction between multiple segments,
corner that breaks a segment into two.

junction

corner

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 81

Edge tracking: ORT Toolkit
Designed by Ata Etemadi.
The algorithm is called Strider and is like a spider moving
along pixel chains of an image, looking for junctions and
corners.
It identifies them by a measure of local asymmetry.

When it is moving along a straight or curved segment with no
interruptions, its legs are symmetric about its body.
When it encounters an obstacle (i.e., a corner or junction) its legs
are no longer symmetric.
If the obstacle is small (compared to the spider), it soon becomes
symmetrical.
If the obstacle is large, it will take longer.

The accuracy depends on the length of the spider and the
size of its stride.

The larger they are, the less sensitive it becomes.

CS 484, Spring 2008 ©2008, Selim Aksoy 82

Edge tracking: ORT Toolkit

L1: the line segment from pixel 1 of the spider
to pixel N-2 of the spider

L2: the line segment from pixel 1 of the spider
to pixel N of the spider

The angle must be <= arctan(2/length(L2))

angle 0
here

The measure of asymmetry is the angle
between two line segments.

Longer spiders allow less of an angle.
Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 83

Edge tracking: ORT Toolkit

The parameters are the length of the spider and
the number of pixels per step.
These parameters can be changed to allow for
less sensitivity, so that we get longer line
segments.
The algorithm has a final phase in which adjacent
segments whose angle differs by less than a given
threshold are joined.
Advantages:

Works on pixel chains of arbitrary complexity.
Can be implemented in parallel.
No assumptions and parameters are well understood.

CS 484, Spring 2008 ©2008, Selim Aksoy 84

Example: building detection

by Yi Li @ University of Washington

CS 484, Spring 2008 ©2008, Selim Aksoy 85

Example: building detection

CS 484, Spring 2008 ©2008, Selim Aksoy 86

Example: object extraction
by Serkan Kiranyaz

Tampere University of Technology

CS 484, Spring 2008 ©2008, Selim Aksoy 87

Example: object extraction

CS 484, Spring 2008 ©2008, Selim Aksoy 88

Example: object extraction

CS 484, Spring 2008 ©2008, Selim Aksoy 89

Example: object extraction

CS 484, Spring 2008 ©2008, Selim Aksoy 90

Example: object recognition

Mauro Costa’s dissertation at the University of
Washington for recognizing 3D objects having
planar, cylindrical, and threaded surfaces:

Detects edges from two intensity images.
From the edge image, finds a set of high-level features
and their relationships.
Hypothesizes a 3D model using relational indexing.
Estimates the pose of the object using point pairs, line
segment pairs, and ellipse/circle pairs.
Verifies the model after projecting to 2D.

CS 484, Spring 2008 ©2008, Selim Aksoy 91

Example: object recognition

Example scenes used. The labels “left” and “right” indicate the direction of the light source.

CS 484, Spring 2008 ©2008, Selim Aksoy 92

CS 484, Spring 2008 ©2008, Selim Aksoy 93

Example: object recognition

CS 484, Spring 2008 ©2008, Selim Aksoy 94

Example: object recognition

CS 484, Spring 2008 ©2008, Selim Aksoy 95

Example: object recognition

1 coaxials-
multi

3 parallel
lines

2 ellipse
encloses

encloses

encloses

coaxial

1 1 2 3

2 3 3 2

e e e c

Relationship graph and the corresponding 2-graphs.

CS 484, Spring 2008 ©2008, Selim Aksoy 96

Example: object recognition

Learning phase:
relational indexing by
encoding each 2-graph
and storing in a hash
table.
Matching phase:
voting by each 2-graph
observed in the image.

CS 484, Spring 2008 ©2008, Selim Aksoy 97

Example: object recognition

1. The matched features of
the hypothesized object
are used to determine
its pose.

2. The 3D mesh of the
object is used to project
all its features onto the
image.

3. A verification
procedure checks how
well the object features
line up with edges on
the image.

Incorrect hypothesis

