Linear Filtering – Part I

Selim Aksoy
Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

Importance of neighborhood

- Both zebras and dalmatians have black and white pixels in similar numbers.
- The difference between the two is the characteristic appearance of small group of pixels rather than individual pixel values.

Outline

 We will discuss neighborhood operations that work with the values of the image pixels in the neighborhood.

- Spatial domain filtering
- Frequency domain filtering
- Image enhancement
- Finding patterns

3	3	3
3	3	3
3	3	3

• What is the value of the center pixel?

3	4	3
2	ന	3
3	4	2

What assumptions are you making to infer the center value?

- Some neighborhood operations work with
 - the values of the image pixels in the neighborhood, and
 - the corresponding values of a subimage that has the same dimensions as the neighborhood.
- The subimage is called a filter (or mask, kernel, template, window).
- The values in a filter subimage are referred to as coefficients, rather than pixels.

- Operation: modify the pixels in an image based on some function of the pixels in their neighborhood.
- Simplest: linear filtering (replace each pixel by a linear combination of its neighbors).
- Linear spatial filtering is often referred to as "convolving a mask with an image".
- Filter masks are sometimes called convolution masks (or convolution kernels).

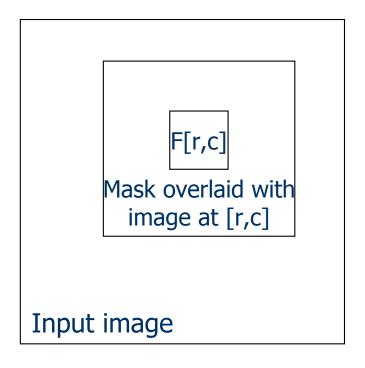
Filtering process:

- Masks operate on a neighborhood of pixels.
- The filter mask is centered on a pixel.
- The mask coefficients are multiplied by the pixel values in its neighborhood and the products are summed.

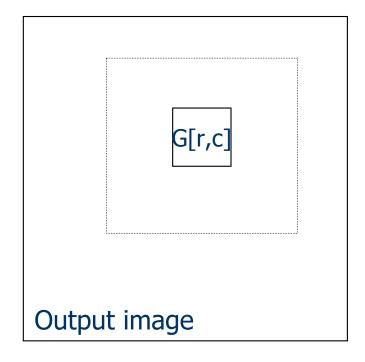
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

- The result goes into the corresponding pixel position in the output image.
- This process is repeated by moving the filter mask from pixel to pixel in the image.

• This is called the cross-correlation operation and is denoted by $G = H \otimes F$



H[-1,-1]	H[-1,0]	H[-1,1]		
H[0,-1]	H[0,0]	H[0,1]		
H[1,-1]	H[1,0]	H[1,1]		
Filter				



 Be careful about indices, image borders and padding during implementation.

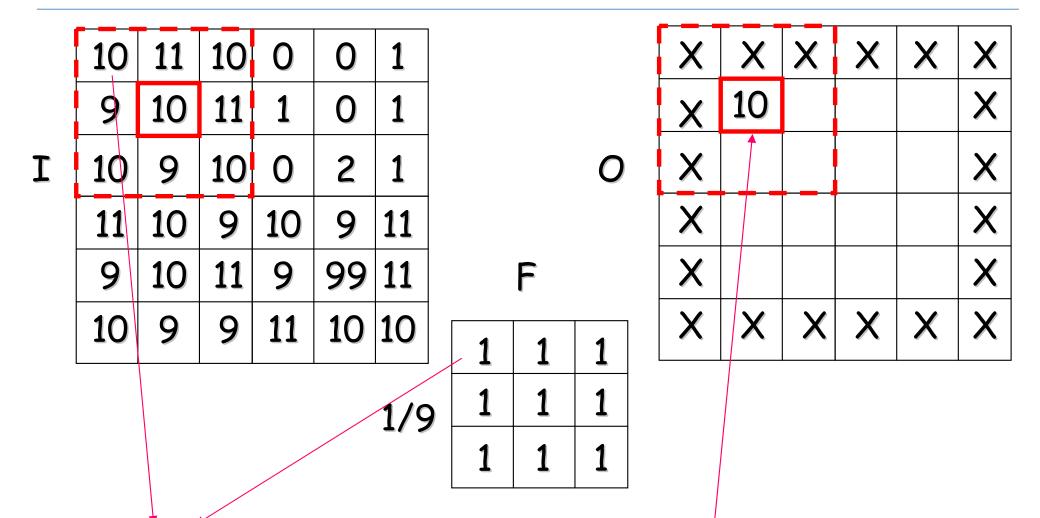
- Often, an image is composed of
 - some underlying ideal structure, which we want to detect and describe,
 - together with some random noise or artifact, which we would like to remove.
- Smoothing filters are used for blurring and for noise reduction.
- Linear smoothing filters are also called averaging filters.

1/9 ×	1	1	1
	1	1	1
	1	1	1

$$\frac{1}{16} \times 2 \qquad 1$$
 $\frac{1}{16} \times 2 \qquad 4 \qquad 2$
 $1 \qquad 2 \qquad 1$

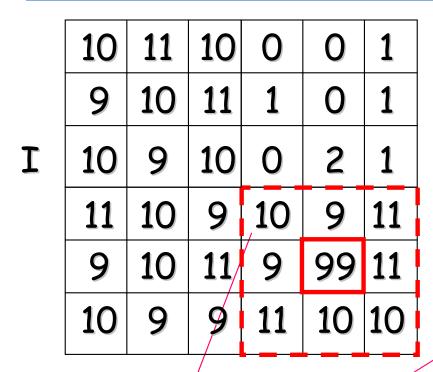
Averaging (mean) filter

Weighted average



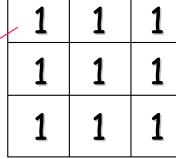
1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = 1/9.(90) = 10

Adapted from Octavia Camps, Penn State



0

F



1/9

X	X	X	X	X	X
X					X
X					X
X					X
X				20	X
X	X	X	X	X	X

1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = 1/9.(180) = 20

Adapted from Octavia Camps, Penn State

- Common types of noise:
 - Salt-and-pepper noise: contains random occurrences of black and white pixels.
 - Impulse noise: contains random occurrences of white pixels.
 - Gaussian noise: variations in intensity drawn from a Gaussian normal distribution.

Original

Salt and pepper noise

Impulse noise

Gaussian noise

Gaussian Salt and pepper noise noise 3x3 5x5 7x7Adapted from Linda Shapiro, U of Washington CS 484, Spring 2008

14

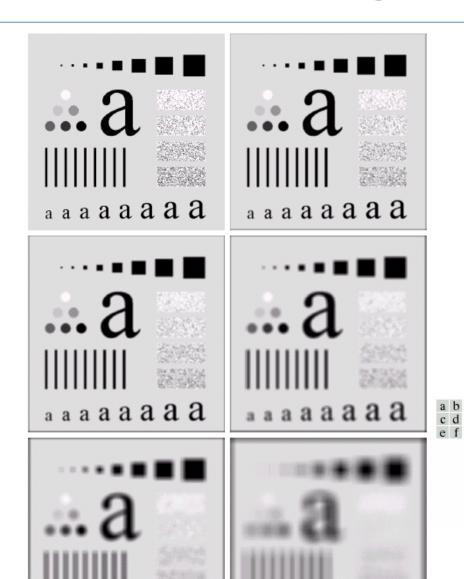
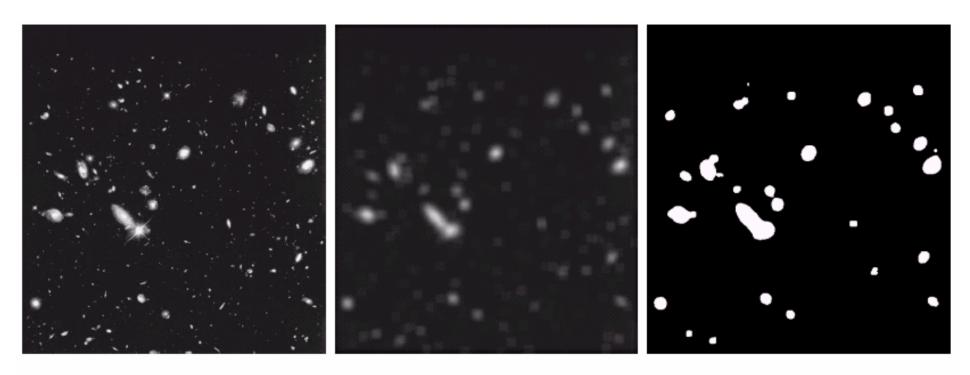


FIGURE 3.35 (a) Original image, of size 500×500 pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes n=3,5,9,15, and 35, respectively. The black squares at the top are of sizes 3,5,9,15,25,35,45, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50×120 pixels.

Adapted from Gonzales and Woods



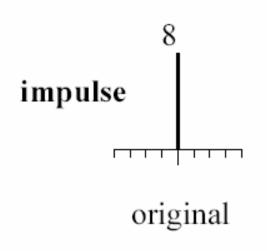
a b c

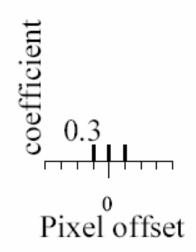
FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

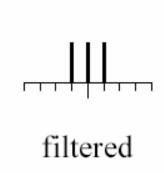


Figure 5.7: Ideal image of checkerboard (top left) with pixel values of 0 in the black squares and 255 in the white squares; (top center) image with added Gaussian noise of standard deviation 30; (top right) pixel values in a horizontal row 100 from the top of the noisy image; (bottom center) noise averaged using a 5x5 neighborhood centered at each pixel; (bottom right) pixels across image row 100 from the top.

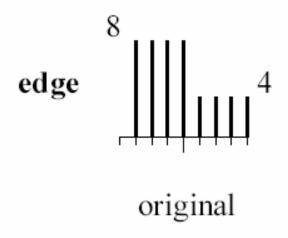
Adapted from Shapiro and Stockman

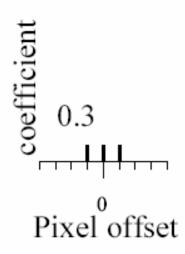


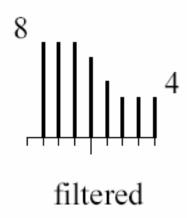




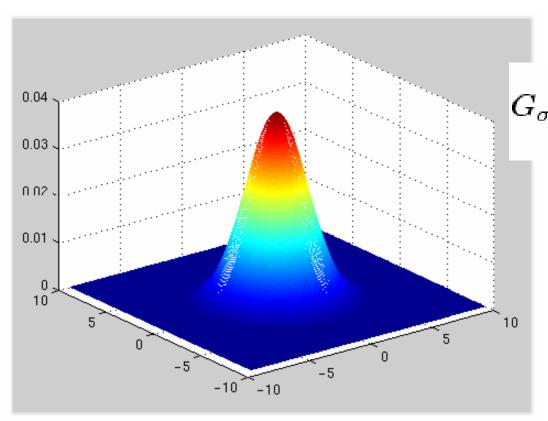
2.4







Adapted from Darrell and Freeman, MIT

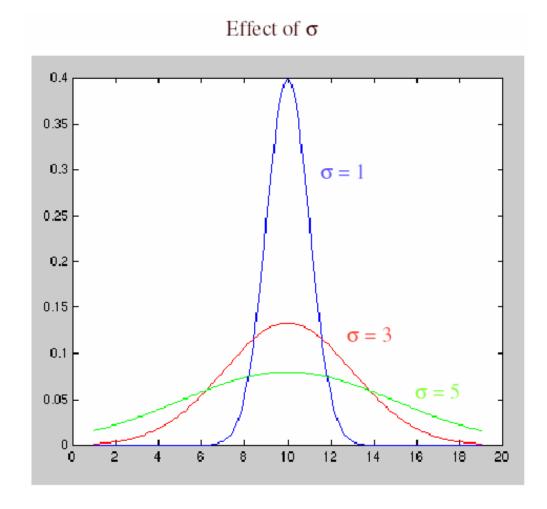


$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right)$$

A weighted average that weighs pixels at its center much more strongly than its boundaries.

2D Gaussian filter

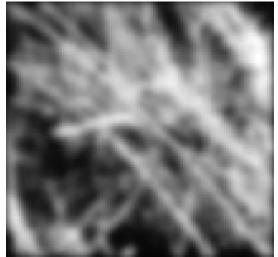
- If σ is small: smoothing will have little effect.
- If σ is larger: neighboring pixels will have larger weights resulting in consensus of the neighbors.
- If σ is very large: details will disappear along with the noise.



Adapted from Martial Hebert, CMU

Result of blurring using a uniform local model.

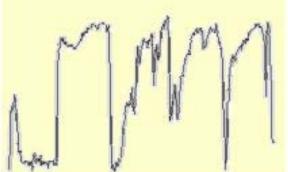
Produces a set of narrow horizontal and vertical bars — ringing effect.

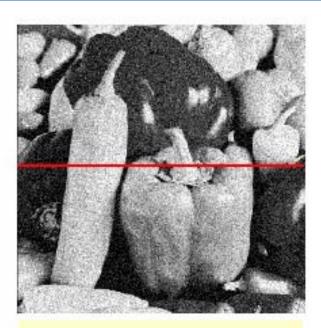


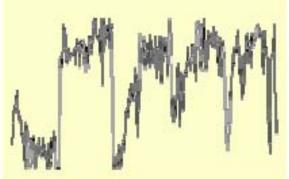
Result of blurring using a Gaussian filter.

Adapted from David Forsyth, UC Berkeley

Image Noise

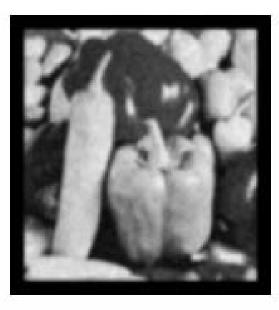


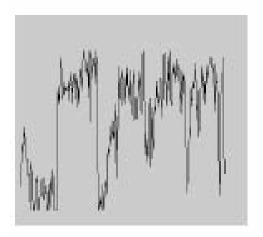




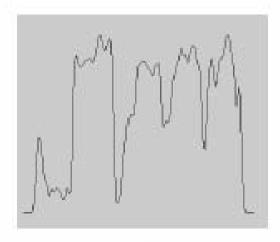
$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma) \label{eq:gaussian}$ Adapted from Martial Hebert, CMU

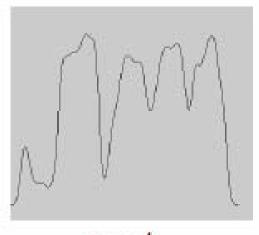




No smoothing

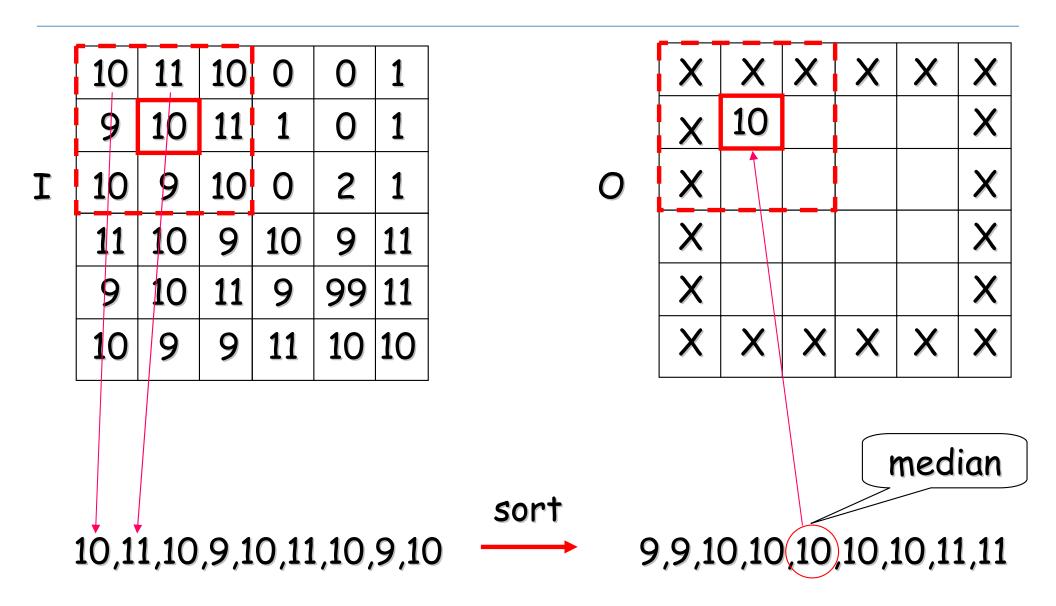


 $\sigma = 2$



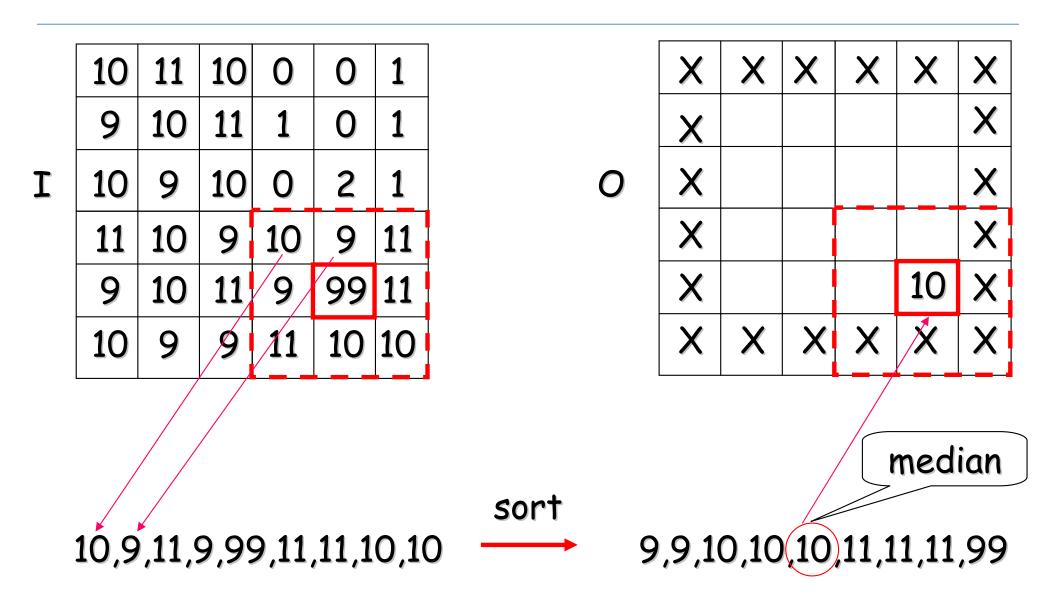
 $\sigma = 4$ Adapted from Martial Hebert, CMU

- Order-statistic filters are nonlinear spatial filters whose response is based on
 - ordering (ranking) the pixels contained in the image area encompassed by the filter, and then
 - replacing the value of the center pixel with the value determined by the ranking result.
- The best-known example is the median filter.
- It is particularly effective in the presence of impulse or salt-and-pepper noise, with considerably less blurring than linear smoothing filters.



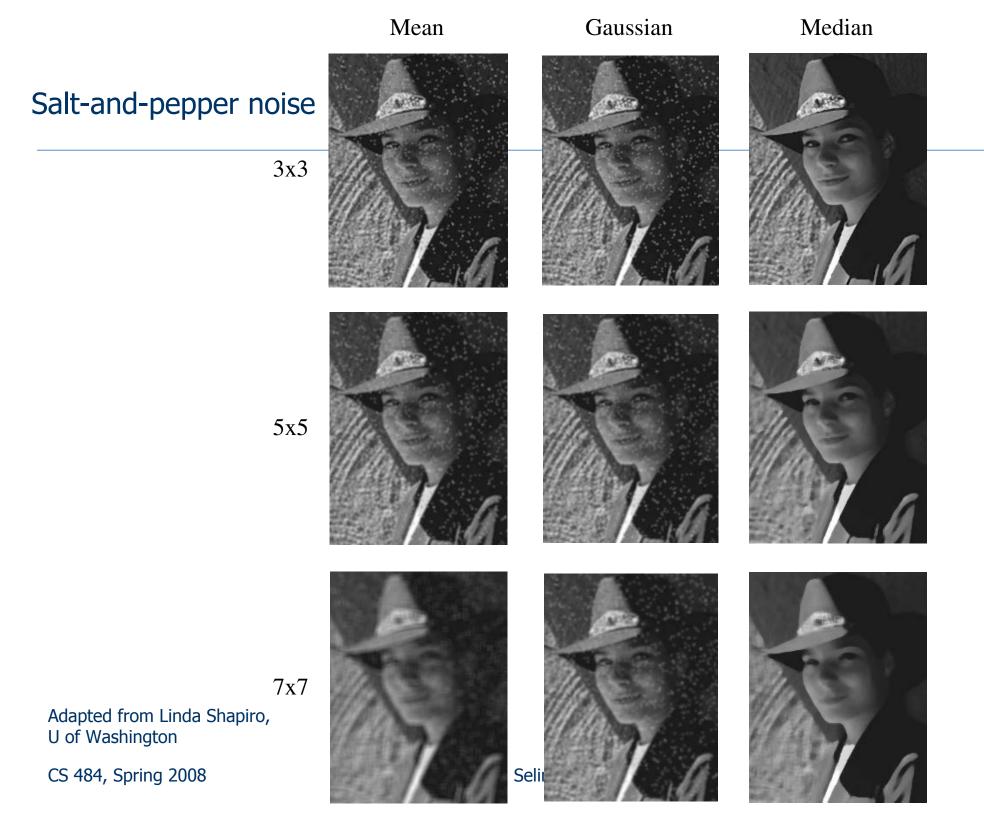
Adapted from Octavia Camps, Penn State

CS 484, Spring 2008 ©2008, Selim Aksoy 25



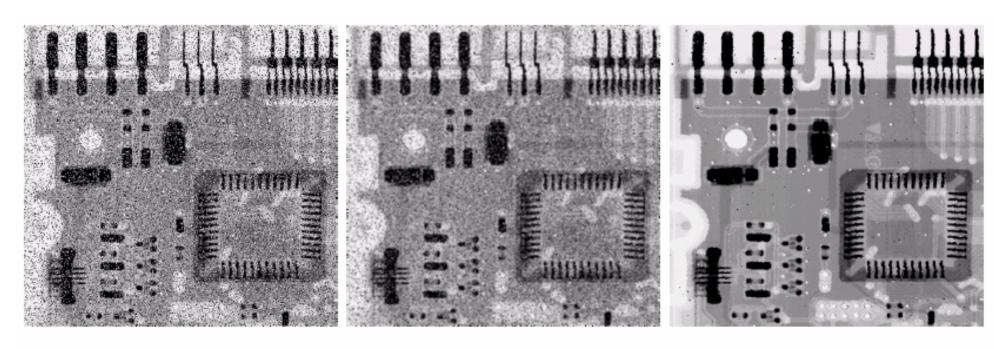
Adapted from Octavia Camps, Penn State

CS 484, Spring 2008 ©2008, Selim Aksoy 26



Mean Gaussian Median Gaussian noise 3x3 5x5 7x7 Adapted from Linda Shapiro, U of Washington CS 484, Spring 2008

28



a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

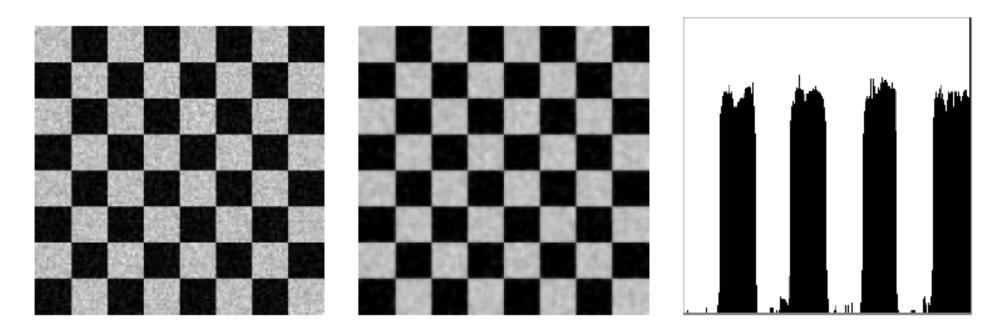
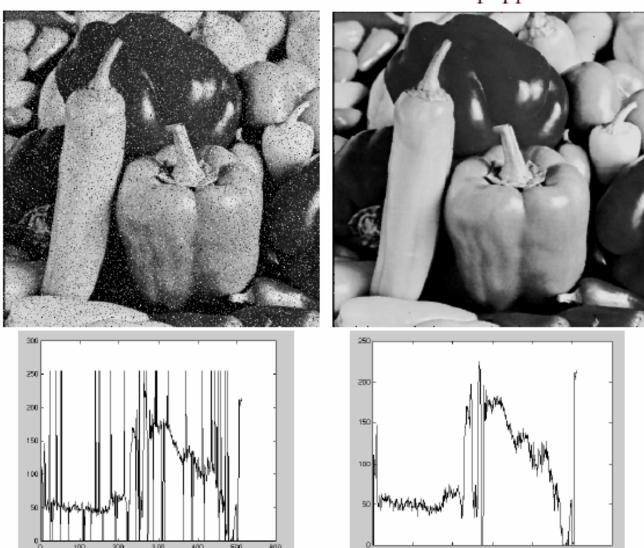
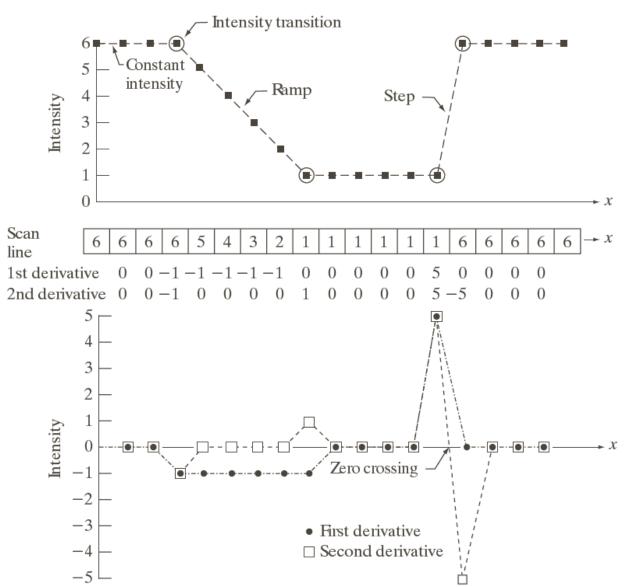


Figure 5.8: (Left) Noisy checkerboard image; (center) result of setting output pixel to the median value of a 5x5 neighborhood centered at the pixel; (right) display of pixels across image row 100 from the top; compare to Figure 5.7.

Effect of median filter on salt and pepper noise



- Objective of sharpening is to highlight or enhance fine detail in an image.
- Since smoothing (averaging) is analogous to integration, sharpening can be accomplished by spatial differentiation.
- First-order derivative of 1D function f(x)
 f(x+1) f(x).
- Second-order derivative of 1D function f(x)f(x+1) - 2f(x) + f(x-1).

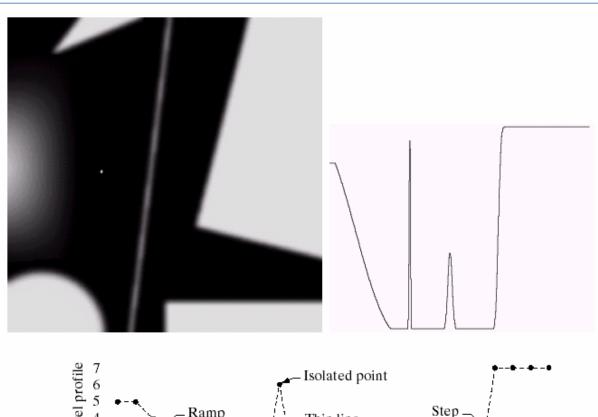


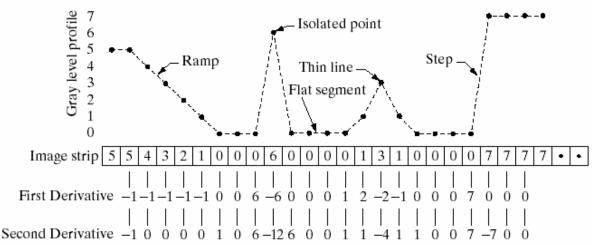
a b

FIGURE 3.36
Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid.

FIGURE 3.38

(a) A simple image. (b) 1-D horizontal gray-level profile along the center of the image and including the isolated noise point. (c) Simplified profile (the points are joined by dashed lines to simplify interpretation).





Observations:

- First-order derivatives generally produce thicker edges in an image.
- Second-order derivatives have a stronger response to fine detail (such as thin lines or isolated points).
- First-order derivatives generally have a stronger response to a gray level step.
- Second-order derivatives produce a double response at step changes in gray level.

• Laplacian of a function (image) f(x,y) of two variables x and y

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

is a second-order derivative operator.

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.39

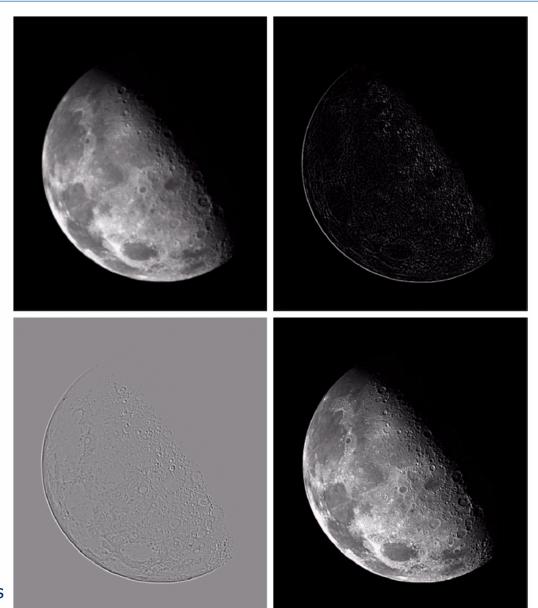
(a) Filter mask used to implement the digital Laplacian, as defined in Eq. (3.7-4). (b) Mask used to implement an extension of this equation that includes the diagonal neighbors. (c) and (d) Two other implementations of the Laplacian.

a b c d

FIGURE 3.40

- (a) Image of the North Pole of the moon.
- (b) Laplacianfiltered image. (c) Laplacian image scaled for display purposes. (d) Image enhanced by using Eq. (3.7-5). (Original image

courtesy of NASA.)



Adapted from Gonzales and Woods

ullet For a function f(x,y), the $\begin{subarray}{c} \begin{subarray}{c} \begin$

$$\nabla f = \left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \right]^T$$

where its magnitude can be used to implement firstorder derivatives.

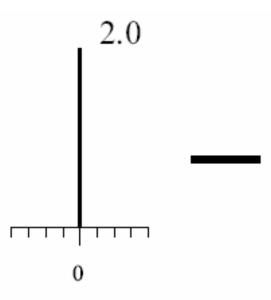
-1	0	0	-1
0	1	1	0

Robert's cross-gradient operators

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel gradient operators

original

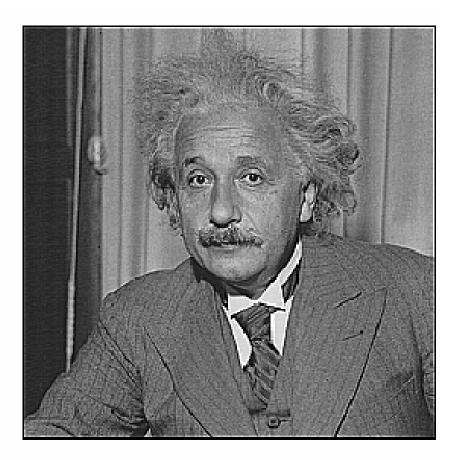


0.33

Sharpened original

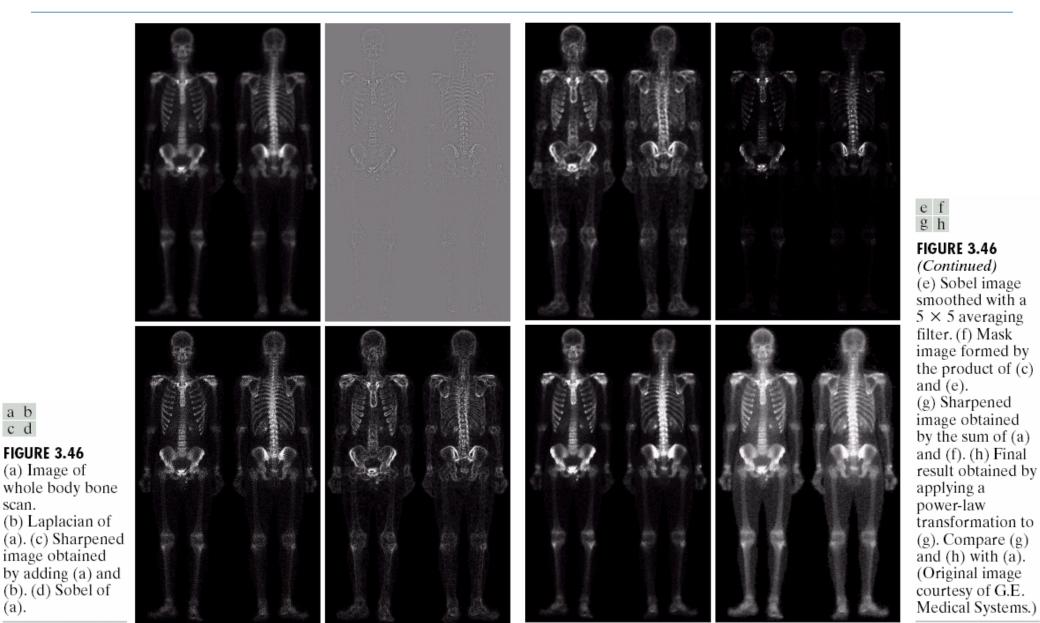
High-boost filtering





after

Combining spatial enhancement methods



a b c d

FIGURE 3.46 (a) Image of whole body bone scan. (b) Laplacian of (a). (c) Sharpened image obtained

(b). (d) Sobel of

(a).

CS 484, Spring 2008

©2008, Selim Aksoy