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Importance of neighborhood

� Both zebras and dalmatians have black and white pixels in 
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� Both zebras and dalmatians have black and white pixels in 
similar numbers.

� The difference between the two is the characteristic 
appearance of small group of pixels rather than individual 
pixel values.

Adapted from Pinar Duygulu, Bilkent University



Outline

� We will discuss neighborhood operations that 
work with the values of the image pixels in the 
neighborhood.neighborhood.

� Spatial domain filtering

� Frequency domain filtering

� Image enhancement
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� Image enhancement

� Finding patterns



Spatial domain filtering

� What is the value of the 
center pixel?
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� What assumptions are you 
making to infer the center 
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making to infer the center 
value?

2 ? 3

3 4 2

3



Spatial domain filtering

� Some neighborhood operations work with

� the values of the image pixels in the neighborhood, and

� the corresponding values of a subimage that has the 
same dimensions as the neighborhood.

� The subimage is called a filter (or mask, kernel, 
template, window).

� The values in a filter subimage are referred to as 
coefficients, rather than pixels.
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coefficients, rather than pixels.



Spatial domain filtering

� Operation: modify the pixels in an image based on 
some function of the pixels in their neighborhood.

� Simplest: linear filtering (replace each pixel by a 
linear combination of its neighbors).

� Linear spatial filtering is often referred to as 
“convolving a mask with an image”.

� Filter masks are sometimes called convolution 
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� Filter masks are sometimes called convolution 
masks (or convolution kernels).



Spatial domain filtering

� Filtering process:

� Masks operate on a neighborhood of pixels.

� The filter mask is centered on a pixel.

� The mask coefficients are multiplied by the pixel values 
in its neighborhood and the products are summed.

The result goes into the corresponding pixel position in 
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� The result goes into the corresponding pixel position in 
the output image.

� This process is repeated by moving the filter mask from 
pixel to pixel in the image.



Spatial domain filtering

� This is called the cross-correlation operation and is 
denoted by

F[r,c]

Mask overlaid with
image at [r,c]

G[r,c]

H[-1,-1] H[-1,0] H[-1,1]

H[0,-1] H[0,0] H[0,1]

H[1,-1] H[1,0] H[1,1]
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� Be careful about indices, image borders and 
padding during implementation.

Input image Output image

H[1,-1] H[1,0] H[1,1]

Filter



Smoothing spatial filters

� Often, an image is composed of

� some underlying ideal structure, which we want to 
detect and describe,detect and describe,

� together with some random noise or artifact, which we 
would like to remove.

� Smoothing filters are used for blurring and for 
noise reduction.

Linear smoothing filters are also called averaging 
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� Linear smoothing filters are also called averaging 
filters.



Smoothing spatial filters
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Averaging (mean) filter Weighted average



Smoothing spatial filters
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1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = 1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = 
1/9.( 90) = 101/9.( 90) = 10
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Adapted from Octavia Camps, Penn State



Smoothing spatial filters
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1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = 1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = 
1/9.( 180) = 201/9.( 180) = 20
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Adapted from Octavia Camps, Penn State



Smoothing spatial filters

� Common types of noise:

� Salt-and-pepper noise: 
contains random contains random 
occurrences of black and 
white pixels.

� Impulse noise: contains 
random occurrences of 
white pixels.

Original Salt and pepper noise
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� Gaussian noise: variations 
in intensity drawn from a 
Gaussian normal 
distribution.

Gaussian noiseImpulse noiseAdapted from Linda Shapiro, U of Washington



Gaussian
noise

Salt and pepper
noise

3x3

5x5
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7x7
Adapted from Linda Shapiro,
U of Washington



Smoothing spatial filters
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Adapted from Gonzales and Woods



Smoothing spatial filters
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Adapted from Gonzales and Woods



Smoothing spatial filters
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Adapted from Shapiro and Stockman



Smoothing spatial filters
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Adapted from Darrell and Freeman, MIT



Smoothing spatial filters

A weighted average that 
weighs pixels at its center 
much more strongly than 
its boundaries.
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its boundaries.

2D Gaussian filter

Adapted from Martial Hebert, CMU



Smoothing spatial filters

� If σ is small: smoothing 
will have little effect.

� If σ is larger: neighboring 
pixels will have larger 
weights resulting in 
consensus of the 
neighbors.
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� If σ is very large: details 
will disappear along with 
the noise.

Adapted from Martial Hebert, CMU



Smoothing spatial filters

Result of blurring 
using a uniform 
local model.

Result of 
blurring using a 
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Produces a set of 
narrow horizontal 
and vertical bars –
ringing effect.

blurring using a 
Gaussian filter.

Adapted from David Forsyth, UC Berkeley



Smoothing spatial filters
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Adapted from Martial Hebert, CMU



Smoothing spatial filters
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Adapted from Martial Hebert, CMU



Order-statistic filters

� Order-statistic filters are nonlinear spatial filters 
whose response is based on

� ordering (ranking) the pixels contained in the image 
area encompassed by the filter, and then

� replacing the value of the center pixel with the value 
determined by the ranking result.

� The best-known example is the median filter.

It is particularly effective in the presence of 
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� It is particularly effective in the presence of 
impulse or salt-and-pepper noise, with 
considerably less blurring than linear smoothing 
filters.



Order-statistic filters
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10,11,10,9,10,11,10,9,1010,11,10,9,10,11,10,9,10 9,9,10,10,10,10,10,11,119,9,10,10,10,10,10,11,11
sortsort

medianmedian

Adapted from Octavia Camps, Penn State



Order-statistic filters
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10,9,11,9,99,11,11,10,1010,9,11,9,99,11,11,10,10 9,9,10,10,10,11,11,11,999,9,10,10,10,11,11,11,99
sortsort

medianmedian

Adapted from Octavia Camps, Penn State



3x3

Mean Gaussian Median

Salt-and-pepper noise

5x5
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7x7

Adapted from Linda Shapiro,
U of Washington



3x3

Mean Gaussian Median

Gaussian noise

5x5
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7x7
Adapted from Linda Shapiro,
U of Washington



Order-statistic filters
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Adapted from Gonzales and Woods



Order-statistic filters
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Adapted from Shapiro and Stockman



Order-statistic filters
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Adapted from Martial Hebert, CMU



Sharpening spatial filters

� Objective of sharpening is to highlight or enhance 
fine detail in an image.

� Since smoothing (averaging) is analogous to 
integration, sharpening can be accomplished by 
spatial differentiation.

� First-order derivative of 1D function f(x)
f(x+1) – f(x).
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� Second-order derivative of 1D function f(x)
f(x+1) – 2f(x) + f(x-1).



Sharpening spatial filters
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Adapted from Gonzales and Woods



Sharpening spatial filters
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Adapted from Gonzales and Woods



Sharpening spatial filters

� Observations:

� First-order derivatives generally produce thicker edges 
in an image.in an image.

� Second-order derivatives have a stronger response to 
fine detail (such as thin lines or isolated points).

� First-order derivatives generally have a stronger 
response to a gray level step.

� Second-order derivatives produce a double response at 
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� Second-order derivatives produce a double response at 
step changes in gray level.



Sharpening spatial filters
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Sharpening spatial filters
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Adapted from Gonzales and Woods



Sharpening spatial filters

Robert’s cross-gradient operators
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Sobel gradient operators



Sharpening spatial filters
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High-boost filtering

Adapted from Darrell and Freeman, MIT



Sharpening spatial filters
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Adapted from Darrell and Freeman, MIT



Sharpening spatial filters
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Adapted from Darrell and Freeman, MIT



Combining spatial enhancement methods
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