Linear Filtering – Part II

Selim Aksoy
Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr
Fourier theory

- Jean Baptiste Joseph Fourier had a crazy idea:
 - Any periodic function can be written as a weighted sum of sines and cosines of different frequencies (1807).

- Don’t believe it?
 - Neither did Lagrange, Laplace, Poisson, ...

- But it is true!
 - Fourier series

- Even functions that are not periodic (but whose area under the curve is finite) can be expressed as the integral of sines and cosines multiplied by a weighing function.
 - Fourier transform
Fourier theory

- The Fourier theory shows how most real functions can be represented in terms of a basis of sinusoids.
- The building block: $A \sin(\omega x + \Phi)$
- Add enough of them to get any signal you want.

Adapted from Alexei Efros, CMU
Fourier transform

- The *Fourier transform*, $F(u)$, of a single variable, continuous function, $f(x)$, is defined by

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{j2\pi ux} \, dx.$$

- Given $F(u)$, we can obtain $f(x)$ using the *inverse Fourier transform*

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{j2\pi ux} \, du.$$
Fourier transform

- The *discrete Fourier transform (DFT)*, $F(u)$, of a discrete function of one variable, $f(x)$, $x = 0, 1, 2, \ldots, M - 1$, is defined by

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) \ e^{-j2\pi ux/M}$$

for $u = 0, 1, 2, \ldots, M - 1$.

- Given $F(u)$, we can obtain the original function back using the *inverse DFT*

$$f(x) = \sum_{u=0}^{M-1} F(u) \ e^{j2\pi ux/M}$$

for $x = 0, 1, 2, \ldots, M - 1$.
Fourier transform

- These formulas can be extended for functions of two variables.
- Fourier transform:
 \[F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(ux+vy)} \, dx \, dy. \]
- Inverse Fourier transform:
 \[f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j2\pi(ux+vy)} \, du \, dv. \]
Fourier transform

- **Discrete Fourier transform:**

 \[
 F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{j2\pi(ux/M + vy/N)}
 \]

 for \(u = 0, 1, 2, \ldots, M - 1, \) \(v = 0, 1, 2, \ldots, N - 1. \)

- **Inverse discrete Fourier transform:**

 \[
 f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j2\pi(ux/M + vy/N)}
 \]

 for \(x = 0, 1, 2, \ldots, M - 1, \) \(y = 0, 1, 2, \ldots, N - 1. \)
Fourier transform

- $F(u, v)$ can also be expressed in polar coordinates as

$$F(u, v) = |F(u, v)| e^{j \phi(u, v)}$$

where

$$|F(u, v)| = \left(\Re^2 \{F(u, v)\} + \Im^2 \{F(u, v)\} \right)^{1/2}$$

is called the magnitude or spectrum of the Fourier transform, and

$$\phi(u, v) = \tan^{-1} \left(\frac{\Im \{F(u, v)\}}{\Re \{F(u, v)\}} \right)$$

is called the phase angle or phase spectrum.

- $\Re \{F(u, v)\}$ and $\Im \{F(u, v)\}$ are the real and imaginary parts of $F(u, v)$, respectively.
Fourier transform

• The spectrum need not be interpreted as an image, but rather as a 2D display of the power in the original image versus the frequency components u and v.

• The value $F(0,0)$ is the average of $f(x,y)$.

• Fourier transform is conjugate symmetric ($F(u,v) = F^*(-u,-v)$) and its spectrum is symmetric about the origin ($|F(u,v)| = |F(-u,-v)|$) (when $f(x,y)$ is real).

• Usually the input image function is multiplied by $(-1)^{x+y}$ prior to computing the Fourier transform so that

$$\mathcal{F}[f(x,y)(-1)^{x+y}] = F(u - M/2, v - N/2).$$

The origin of the Fourier transform is located at $u = M/2$ and $v = N/2$.
Fourier transform

Spatial domain

\[f(x) \]

Frequency domain

\[F(s) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi sx} \, dx \]

Adapted from Alexei Efros, CMU
Fourier transform

FIGURE 4.2 (a) A discrete function of M points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

Adapted from Gonzales and Woods
Fourier transform

\textbf{FIGURE 4.3}
(a) Image of a 20×40 white rectangle on a black background of size 512×512 pixels.
(b) Centered Fourier spectrum shown after application of the log transformation given in Eq. (3.2-2). Compare with Fig. 4.2.

Adapted from Gonzales and Woods
Fourier transform

- The *power spectrum* is defined as the square of the Fourier spectrum:

\[P(u, v) = |F(u, v)|^2 = \Re^2 \{ F(u, v) \} + \Im^2 \{ F(u, v) \}. \]

- The radial distribution of values in the Fourier spectrum of an image is sensitive to texture coarseness in that image.
 - A coarse texture will have high values concentrated near the origin of the spectrum.
 - A fine texture will cause the values to be spread out.
Fourier transform

- The angular distribution of values in the spectrum is sensitive to the directionality of the texture in the image.
 - A texture with many edges in a given direction θ will have high values of the spectrum concentrated around the perpendicular direction $\theta + \pi/2$.
 - For a non-directional texture, the spectrum is also non-directional.

- We will come back to this when we talk about texture.
Fourier transform

Figure 5.42: Four images (above) and their power spectrums (below). The power spectrum of the brick texture shows energy in many sinusoids of many frequencies, but the dominant direction is perpendicular to the 6 dark seams running about 45 degrees with the X-axis. There is noticeable energy at 0 degrees with the X axis, due to the several short vertical seams. The power spectrum of the building shows high frequency energy in waves along the X-direction and the Y-direction. The third image is an aerial image of an orchard: the power spectrum shows the rows and columns of the orchard and also the “diagonal rows”. The far right image, taken from a phone book, shows high frequency power at about 60° with the X-axis, which represents the texture in the lines of text. Energy is spread more broadly in the perpendicular direction also in order to model the characters and their spacing.

Adapted from Shapiro and Stockman
Fourier transform

Example building patterns in a satellite image and their Fourier spectrum.
The discrete *convolution* of two functions \(f(x, y) \) and \(h(x, y) \) of size \(M \times N \) is defined as

\[
f(x, y) \ast h(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n).
\]

This is equivalent to the *correlation* of \(f(x, y) \) with \(h(x, y) \) flipped about the origin.

Convolution theorem:

\[
f(x, y) \ast h(x, y) \Leftrightarrow F(u, v) \cdot H(u, v)
\]

\[
f(x, y) h(x, y) \Leftrightarrow F(u, v) \ast H(u, v)
\]

where “\(\Leftrightarrow \)” indicates a Fourier transform pair.
Frequency domain filtering

Filter image $f(x, y)$ **with mask** $h(x, y)$

1. Fourier transform the image $f(x, y)$ to obtain its frequency rep. $F(u, v)$.
2. Fourier transform the mask $h(x, y)$ to obtain its frequency rep. $H(u, v)$
3. Multiply $F(u, v)$ and $H(u, v)$ pointwise to obtain $F'(u, v)$
4. Apply the inverse Fourier transform to $F'(u, v)$ to obtain the filtered image $f'(x, y)$.

Algorithm 3: Filtering image $f(x, y)$ with mask $h(x, y)$ using the Fourier transform.

Figure 4.5 Basic steps for filtering in the frequency domain.

Adapted from Shapiro and Stockman, and Gonzales and Woods.
Since the discrete Fourier transform is periodic, padding is needed in the implementation to avoid aliasing (see section 4.6 in the Gonzales-Woods book for implementation details).

FIGURE 4.9
(a) Gaussian frequency domain lowpass filter.
(b) Gaussian frequency domain highpass filter.
(c) Corresponding lowpass spatial filter.
(d) Corresponding highpass spatial filter. The masks shown are used in Chapter 3 for lowpass and highpass filtering.
Frequency domain filtering

\[f(x,y) \star h(x,y) = g(x,y) \]

\[|F(u,v)| \times |H(u,v)| = |G(u,v)| \]

Adapted from Alexei Efros, CMU
Smoothing frequency domain filters

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an image. (c) Filter radial cross section.

FIGURE 4.11 (a) An image of size 500 × 500 pixels and (b) its Fourier spectrum. The superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0, 94.6, 96.4, 98.0, and 99.5% of the image power, respectively.
Smoothing frequency domain filters

FIGURE 4.12 (a) Original image. (b)–(f) Results of ideal lowpass filtering with cutoff frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). The power removed by these filters was 8, 5.4, 3.6, 2, and 0.5% of the total, respectively.
Smoothing frequency domain filters

The blurring and ringing caused by the ideal low-pass filter can be explained using the convolution theorem where the spatial representation of a filter is given below.

FIGURE 4.43
(a) Representation in the spatial domain of an ILPF of radius 5 and size 1000×1000.
(b) Intensity profile of a horizontal line passing through the center of the image.
Smoothing frequency domain filters

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections for various values of D_0.

Adapted from Gonzales and Woods
Smoothing frequency domain filters

FIGURE 4.18 (a) Original image. (b)–(f) Results of filtering with Gaussian lowpass filters with cutoff frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.
Sharpening frequency domain filters

FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
Sharpening frequency domain filters

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.

Adapted from Gonzales and Woods
Sharpening frequency domain filters

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with $D_0 = 15, 30, \text{ and } 80$, respectively. Problems with ringing are quite evident in (a) and (b).
Sharpening frequency domain filters

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with $D_0 = 15$, 30, and 80, respectively. Compare with Figs. 4.24 and 4.25.
Frequency domain processing

An image and its Fourier spectrum.

Adapted from Alexei Efros, CMU
Frequency domain processing

Results of modifying the spectrum and reconstructing the image.

Adapted from Alexei Efros, CMU
Frequency domain processing

Results of modifying the spectrum and reconstructing the image.

Adapted from Alexei Efros, CMU
Template matching

- Correlation can also be used for matching.
- If we want to determine whether an image f contains a particular object, we let h be that object (also called a template) and compute the correlation between f and h.
- If there is a match, the correlation will be maximum at the location where h finds a correspondence in f.
- Preprocessing such as scaling and alignment is necessary in most practical applications.
Template matching

FIGURE 4.41
(a) Image.
(b) Template.
(c) and
(d) Padded
images.
(e) Correlation
function displayed
as an image.
(f) Horizontal
profile line
trough the
highest value in
(e), showing the
point at which the
best match took
place.

Highest correlation
value

Gray-level
profile line

Adapted from Gonzales and Woods
Template matching

Face detection using template matching: face templates.
Template matching

Face detection using template matching: detected faces.
Resizing images

How can we generate a half-sized version of a large image?
Resizing images

Throw away every other row and column to create a 1/2 size image (also called sub-sampling).

Adapted from Steve Seitz, U of Washington
Resizing images

1/2
1/4 (2x zoom)
1/8 (4x zoom)

Does this look nice?

Adapted from Steve Seitz, U of Washington
Resizing images

- We cannot shrink an image by simply taking every k’th pixel.
- Solution: smooth the image, then sub-sample.

Gaussian 1/2

Gaussian 1/4

Gaussian 1/8

Adapted from Steve Seitz, U of Washington
Resizing images

Gaussian 1/2

Gaussian 1/4
(2x zoom)

Gaussian 1/8
(4x zoom)

Adapted from Steve Seitz, U of Washington
Sampling and aliasing

Examples of GOOD sampling

Examples of BAD sampling -> Aliasing

Adapted from Steve Seitz, U of Washington
Sampling and aliasing

- Errors appear if we do not sample properly.
- Common phenomenon:
 - High spatial frequency components of the image appear as low spatial frequency components.
- Examples:
 - Wagon wheels rolling the wrong way in movies.
 - Checkerboards misrepresented in ray tracing.
 - Striped shirts look funny on color television.
Gaussian pyramids

FIGURE 7.2 (a) A pyramidal image structure and (b) system block diagram for creating it.
Gaussian pyramids

\[G_4 = (G_3 \ast \text{gaussian}) \downarrow 2 \]
\[G_3 = (G_2 \ast \text{gaussian}) \downarrow 2 \]
\[G_2 = (G_1 \ast \text{gaussian}) \downarrow 2 \]
\[G_1 = (G_0 \ast \text{gaussian}) \downarrow 2 \]

Low resolution

High resolution

Irani & Basri

Adapted from Michael Black, Brown University
Gaussian pyramids

Irani & Basri

Adapted from Michael Black, Brown University