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Overview

I Statistical pattern recognition
I Bayesian Decision Theory

I Parametric models
I Non-parametric models

I Feature reduction and selection
I Non-Bayesian classifiers

I Distance-based classifiers
I Decision boundary-based classifiers

I Unsupervised learning and clustering
I Algorithm-independent learning issues

I Estimating and comparing classifiers
I Combining classifiers

I Structural and syntactic pattern recognition

CS 484, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 2 / 64



Bayesian Decision Theory

I Bayesian Decision Theory is a statistical approach that
quantifies the tradeoffs between various decisions using
probabilities and costs that accompany such decisions.

I Fish sorting example: define w, the type of fish we observe
(state of nature), as a random variable where

I w = w1 for sea bass,
I w = w2 for salmon.
I P (w1) is the a priori probability that the next fish is a sea

bass.
I P (w2) is the a priori probability that the next fish is a salmon.
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Prior Probabilities

I Prior probabilities reflect our knowledge of how likely each
type of fish will appear before we actually see it.

I How can we choose P (w1) and P (w2)?
I Set P (w1) = P (w2) if they are equiprobable (uniform priors).
I May use different values depending on the fishing area, time

of the year, etc.

I Assume there are no other types of fish

P (w1) + P (w2) = 1

(exclusivity and exhaustivity).
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Making a Decision

I How can we make a decision with only the prior
information?

Decide

w1 if P (w1) > P (w2)

w2 otherwise

I What is the probability of error for this decision?

P (error) = min{P (w1), P (w2)}
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Class-Conditional Probabilities

I Let’s try to improve the decision using the lightness
measurement x.

I Let x be a continuous random variable.

I Define p(x|wj) as the class-conditional probability density
(probability of x given that the state of nature is wj for
j = 1, 2).

I p(x|w1) and p(x|w2) describe the difference in lightness
between populations of sea bass and salmon.
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Posterior Probabilities

I Suppose we know P (wj) and p(x|wj) for j = 1, 2, and
measure the lightness of a fish as the value x.

I Define P (wj|x) as the a posteriori probability (probability of
the state of nature being wj given the measurement of
feature value x).

I We can use the Bayes formula to convert the prior
probability to the posterior probability

P (wj|x) =
p(x|wj)P (wj)

p(x)

where p(x) =
∑2

j=1 p(x|wj)P (wj).
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Making a Decision

I p(x|wj) is called the likelihood and p(x) is called the
evidence.

I How can we make a decision after observing the value of x?

Decide

w1 if P (w1|x) > P (w2|x)

w2 otherwise

I Rewriting the rule gives

Decide

w1 if p(x|w1)
p(x|w2)

> P (w2)
P (w1)

w2 otherwise

I Note that, at every x, P (w1|x) + P (w2|x) = 1.
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Probability of Error

I What is the probability of error for this decision?

P (error |x) =

P (w1|x) if we decide w2

P (w2|x) if we decide w1

I What is the average probability of error?

P (error) =

∫ ∞

−∞
p(error , x) dx =

∫ ∞

−∞
P (error |x) p(x) dx

I Bayes decision rule minimizes this error because

P (error |x) = min{P (w1|x), P (w2|x)}.
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Probability of Error

Figure 1: Components of the probability of error for equal priors and the
non-optimal decision point x∗. The optimal point xB minimizes the total
shaded area and gives the Bayes error rate.
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Receiver Operating Characteristics

I Consider the two-category case and define
I w1: target is present,
I w2: target is not present.

Table 1: Confusion matrix .

Assigned
w1 w2

True
w1 correct detection mis-detection
w2 false alarm correct rejection

I Mis-detection is also called false negative or Type I error.

I False alarm is also called false positive or Type II error.
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Receiver Operating Characteristics

I If we use a parameter (e.g.,
a threshold) in our
decision, the plot of these
rates for different values of
the parameter is called the
receiver operating
characteristic (ROC) curve.

Figure 2: Example receiver operating
characteristic (ROC) curves for
different settings of the system.
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Bayesian Decision Theory

I How can we generalize to
I more than one feature?

I replace the scalar x by the feature vector x
I more than two states of nature?

I just a difference in notation
I allowing actions other than just decisions?

I allow the possibility of rejection
I different risks in the decision?

I define how costly each action is
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Minimum-error-rate Classification

I Let {w1, . . . , wc} be the finite set of c states of nature
(classes, categories).

I Let x be the d-component vector-valued random variable
called the feature vector .

I If all errors are equally costly, the minimum-error decision
rule is defined as

Decide wi if P (wi|x) > P (wj|x) ∀j 6= i.

I The resulting error is called the Bayes error and is the best
performance that can be achieved.
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Bayesian Decision Theory

I Bayesian Decision Theory shows us how to design an
optimal classifier if we know the prior probabilities P (wi)

and the class-conditional densities p(x|wi).

I Unfortunately, we rarely have complete knowledge of the
probabilistic structure.

I However, we can often find design samples or training data
that include particular representatives of the patterns we
want to classify.
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Bayesian Decision Theory

I How can we estimate (learn) the unknown
p(x|wj), j = 1, . . . , c?

I Parametric models: assume that the form of the density
functions are known.

I Density models (e.g., Gaussian)
I Mixture models (e.g., mixture of Gaussians)
I Hidden Markov Models
I Bayesian Belief Networks

I Non-parametric models: no assumption about the form.
I Histogram-based estimation
I Parzen window estimation
I Nearest neighbor estimation
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The Gaussian Density

I Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

I Some properties of the Gaussian:
I Analytically tractable.
I Completely specified by the 1st and 2nd moments.
I Has the maximum entropy of all distributions with a given

mean and variance.
I Many processes are asymptotically Gaussian (Central Limit

Theorem).
I Linear transformations of a Gaussian are also Gaussian.
I Uncorrelatedness implies independence.
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Univariate Gaussian

I For x ∈ R:

p(x) = N(µ, σ2)

=
1√
2πσ

exp

[
−1

2

(
x− µ

σ

)2
]

where

µ = E[x] =

∫ ∞

−∞
x p(x) dx,

σ2 = E[(x− µ)2] =

∫ ∞

−∞
(x− µ)2 p(x) dx.
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Univariate Gaussian

Figure 3: A univariate Gaussian distribution has roughly 95% of its area in
the range |x− µ| ≤ 2σ.
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Multivariate Gaussian

I For x ∈ Rd:

p(x) = N(µ,Σ)

=
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where

µ = E[x] =

∫
x p(x) dx,

Σ = E[(x− µ)(x− µ)T ] =

∫
(x− µ)(x− µ)T p(x) dx.
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Multivariate Gaussian

Figure 4: Samples drawn from a two-dimensional Gaussian lie in a cloud
centered on the mean µ. The loci of points of constant density are the
ellipses for which (x− µ)T Σ−1(x− µ) is constant, where the eigenvectors of
Σ determine the direction and the corresponding eigenvalues determine the
length of the principal axes. The quantity r2 = (x− µ)T Σ−1(x− µ) is called
the squared Mahalanobis distance from x to µ.
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Gaussian Density Estimation

I The maximum likelihood estimates of a Gaussian are

µ̂ =
1

n

n∑
i=1

xi and Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T .
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Figure 5: Gaussian density estimation examples.
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Bernoulli Density Estimation

I Suppose that P (x|θ) = Bernoulli(θ) = θx(1− θ)1−x where
x = 0, 1 and 0 ≤ θ ≤ 1.

I The maximum likelihood estimate of θ can be computed as

θ̂ =
1

n

n∑
i=1

xi.
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Non-parametric Density Estimation

I Density estimation with parametric models assumes that
the forms of the underlying density functions are known.

I However, common parametric forms do not always fit the
densities actually encountered in practice.

I In addition, most of the classical parametric densities are
unimodal, whereas many practical problems involve
multimodal densities.

I Non-parametric methods can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known.
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Histogram Method

I A very simple method is to
partition the space into a
number of equally-sized
cells (bins) and compute a
histogram. Figure 6: Histogram in one

dimension.

I The estimate of the density at a point x becomes

p(x) =
k

nV

where n is the total number of samples, k is the number of
samples in the cell that includes x, and V is the volume of
that cell.
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Classification Error

I To apply these results to multiple classes, separate the
training samples to c subsets D1, . . . ,Dc, with the samples
in Di belonging to class wi, and then estimate each density
p(x|wi,Di) separately.

I Different sources of error:
I Bayes error: due to overlapping class-conditional densities

(related to the features used).
I Model error: due to incorrect model.
I Estimation error: due to estimation from a finite sample (can

be reduced by increasing the amount of training data).
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Feature Reduction and Selection

I In practical multicategory applications, it is not unusual to
encounter problems involving tens or hundreds of features.

I Intuitively, it may seem that each feature is useful for at
least some of the discriminations.

I There are two issues that we must be careful about:
I How is the classification accuracy affected by the

dimensionality (relative to the amount of training data)?
I How is the computational complexity of the classifier affected

by the dimensionality?
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Problems of Dimensionality

I In general, if the performance obtained with a given set of
features is inadequate, it is natural to consider adding new
features.

I Unfortunately, it has frequently been observed in practice
that, beyond a certain point, adding new features leads to
worse rather than better performance.

I This is called the curse of dimensionality .

I Potential reasons include wrong assumptions in model
selection or estimation errors due to the finite number of
training samples for high-dimensional observations
(overfitting).
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Problems of Dimensionality

I All of the commonly used classifiers can suffer from the
curse of dimensionality.

I While an exact relationship between the probability of error,
the number of training samples, the number of features, and
the number of parameters is very difficult to establish, some
guidelines have been suggested.

I It is generally accepted that using at least ten times as
many training samples per class as the number of features
(n/d > 10) is a good practice.

I The more complex the classifier, the larger should the ratio
of sample size to dimensionality be.
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Problems of Dimensionality

I Dimensionality can be reduced by
I redesigning the features
I selecting an appropriate subset among the existing features
I transforming to different feature spaces

I Principal Components Analysis (PCA) seeks a projection that
best represents the data in a least-squares sense.

I Linear Discriminant Analysis (LDA) seeks a projection that
best separates the data in a least-squares sense.

CS 484, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 30 / 64



Examples

(a) Scatter plot.

(b) Projection onto e1.

(c) Projection onto e2.
Figure 7: Scatter plot (red dots) and the principal axes for a bivariate sample.
The blue line shows the axis e1 with the greatest variance and the green line
shows the axis e2 with the smallest variance. Features are now uncorrelated.
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Examples

(a) Scatter plot.

(b) Projection onto the
first PCA axis.

(c) Projection onto the
first LDA axis.

Figure 8: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.
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Examples

(a) Scatter plot.

(b) Projection onto the
first PCA axis.

(c) Projection onto the
first LDA axis.

Figure 9: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.
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Non-Bayesian Classifiers

I Distance-based classifiers:
I Minimum distance classifier
I Nearest neighbor classifier

I Decision boundary-based classifiers:
I Linear discriminant functions
I Support vector machines
I Neural networks
I Decision trees
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The k-Nearest Neighbor Classifier

I Given the training data D = {x1, . . . ,xn} as a set of n

labeled examples, the nearest neighbor classifier assigns a
test point x the label associated with its closest neighbor in
D.

I The k-nearest neighbor classifier
classifies x by assigning it the label
most frequently represented among
the k nearest samples.

Figure 10: Classifier for
k = 5.

I Closeness is defined using a distance function.
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Distance Functions

I A general class of metrics for d-dimensional patterns is the
Minkowski metric

Lp(x,y) =

(
d∑

i=1

|xi − yi|p
)1/p

also referred to as the Lp norm.

I The Euclidean distance is the L2 norm

L2(x,y) =

(
d∑

i=1

|xi − yi|2
)1/2

.

I The Manhattan or city block distance is the L1 norm

L1(x,y) =
d∑

i=1

|xi − yi|.
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Distance Functions

I The L∞ norm is the maximum of the distances along
individual coordinate axes

L∞(x,y) =
d

max
i=1

|xi − yi|.

Figure 11: Each colored shape consists of points at a distance 1.0 from the
origin, measured using different values of p in the Minkowski Lp metric.
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Linear Discriminant Functions

Figure 12: Linear decision boundaries produced by using one linear
discriminant for each class.
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Support Vector Machines

I Given a set of training patterns and class labels as
(x1, y1), . . . , (xn, yn) ∈ Rd × {±1}, the goal is to find a
classifier function f : Rd → {±1} such that f(x) = y will
correctly classify new patterns.

I Support vector machines are based on the class of
hyperplanes

(w · x) + b = 0, w ∈ Rd, b ∈ R

corresponding to decision functions

f(x) = sign((w · x) + b).
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Support Vector Machines

Figure 13: A binary classification problem of separating balls from diamonds.
Support vector machines find hyperplane decision boundaries that yield the
maximum margin of separation between the classes. The optimal hyperplane
is orthogonal to the shortest line connecting the convex hulls of the two
classes (dotted), and intersects it half way between the two classes.
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Support Vector Machines

I To construct the optimal hyperplane, we can define the
following optimization problem:

minimize
1

2
‖w‖2

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . , n.

I This constrained optimization problem is solved using
Lagrange multipliers αi ≥ 0 and the Lagrangian

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi(yi((w · xi) + b)− 1)

where L has to be minimized w.r.t. the prime variables w

and b, and maximized w.r.t. the dual variables αi.
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Support Vector Machines

I The solution can be obtained using quadratic programming
techniques where the solution vector

w =
n∑

i=1

αi yi xi

is the summation of a subset of the training patterns, called
the support vectors, whose αi are non-zero.

I The support vectors lie on the margin and carry all relevant
information about the classification problem (the remaining
patterns are irrelevant).
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Neural Networks

Figure 14: A neural network consists of an input layer , an output layer and
usually one or more hidden layers that are interconnected by modifiable
weights represented by links between layers. They learn the values of these
weights as a mapping from the input to the output.
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Decision Trees

Figure 15: Decision trees classify a pattern through a sequence of
questions, in which the next question asked depends on the answer to the
current question.
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Unsupervised Learning and Clustering

I Clustering is an unsupervised procedure that uses unlabeled
samples.

I Unsupervised procedures are used for several reasons:

I Collecting and labeling a large set of sample patterns can be
costly or may not be feasible.

I One can train with large amount of unlabeled data, and then
use supervision to label the groupings found.

I Unsupervised methods can be used for feature extraction.
I Exploratory data analysis can provide insight into the nature

or structure of the data.
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Clusters

I A cluster is comprised of a number of similar objects
collected or grouped together.

I Patterns within a cluster are more similar to each other than
are patterns in different clusters.

I Clusters may be described as connected regions of a
multi-dimensional space containing a relatively high density
of points, separated from other such regions by a region
containing a relatively low density of points.
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Clustering

I Clustering is a very difficult problem because data can
reveal clusters with different shapes and sizes.

Figure 16: The number of clusters in the data often depend on the resolution
(fine vs. coarse) with which we view the data. How many clusters do you see
in this figure? 5, 8, 10, more?
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Clustering

I Most of these algorithms are based on the following two
popular techniques:

I Iterative squared-error partitioning,
I Agglomerative hierarchical clustering.

I One of the main challenges is to select an appropriate
measure of similarity to define clusters that is often both
data (cluster shape) and context dependent.
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Squared-error Partitioning

I Suppose that the given set of n patterns has somehow
been partitioned into k clusters D1, . . . ,Dk.

I Let ni be the number of samples in Di and let mi be the
mean of those samples

mi =
1

ni

∑
x∈Di

x.

I Then, the sum-of-squared errors is defined by

Je =
k∑

i=1

∑
x∈Di

‖x−mi‖2.

I For a given cluster Di, the mean vector mi (centroid) is the
best representative of the samples in Di.
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Squared-error Partitioning

I A general algorithm for iterative squared-error partitioning:
1. Select an initial partition with k clusters. Repeat steps 2

through 5 until the cluster membership stabilizes.
2. Generate a new partition by assigning each pattern to its

closest cluster center.
3. Compute new cluster centers as the centroids of the clusters.
4. Repeat steps 2 and 3 until an optimum value of the criterion

function is found (e.g., when a local minimum is found or a
predefined number of iterations are completed).

5. Adjust the number of clusters by merging and splitting
existing clusters or by removing small or outlier clusters.

I This algorithm, without step 5, is also known as the
k-means algorithm.
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Squared-error Partitioning

I k-means is computationally efficient and gives good results
if the clusters are compact, hyperspherical in shape and
well-separated in the feature space.

I However, choosing k and choosing the initial partition are
the main drawbacks of this algorithm.

I The value of k is often chosen empirically or by prior
knowledge about the data.

I The initial partition is often chosen by generating k random
points uniformly distributed within the range of the data, or
by randomly selecting k points from the data.
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Hierarchical Clustering

I The k-means algorithm produces a flat data description
where the clusters are disjoint and are at the same level.

I In some applications, groups of patterns share some
characteristics when looked at a particular level.

I Hierarchical clustering tries to capture these multi-level
groupings using hierarchical representations rather than flat
partitions.
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Hierarchical Clustering

I In hierarchical clustering, for a set of n samples,
I the first level consists of n clusters (each cluster containing

exactly one sample),
I the second level contains n− 1 clusters,
I the third level contains n− 2 clusters,
I and so on until the last (n’th) level at which all samples form

a single cluster.

I Given any two samples, at some level they will be grouped
together in the same cluster and remain together at all
higher levels.
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Hierarchical Clustering

I A natural representation of hierarchical clustering is a tree, also
called a dendrogram, which shows how the samples are grouped.

I If there is an unusually large gap between the similarity values for
two particular levels, one can argue that the level with fewer
number of clusters represents a more natural grouping.

Figure 17: A dendrogram can represent the results of hierarchical clustering
algorithms.
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Hierarchical Clustering

I Agglomerative Hierarchical Clustering:
1. Specify the number of clusters. Place every pattern in a

unique cluster and repeat steps 2 and 3 until a partition with
the required number of clusters is obtained.

2. Find the closest clusters according to a distance measure.
3. Merge these two clusters.
4. Return the resulting clusters.
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Hierarchical Clustering

I Popular distance measures (for two clusters Di and Dj):

dmin(Di,Dj) = min
x∈Di
x′∈Dj

‖x− x′‖

dmax(Di,Dj) = max
x∈Di
x′∈Dj

‖x− x′‖

davg(Di,Dj) =
1

#Di #Dj

∑
x∈Di

∑
x′∈Dj

‖x− x′‖

dmean(Di,Dj) = ‖mi −mj‖

CS 484, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 56 / 64



Algorithm-Independent Learning Issues

I We have seen many learning algorithms and techniques for
pattern recognition.

I Some of these algorithms may be preferred because of
their lower computational complexity.

I Others may be preferred because they take into account
some prior knowledge of the form of the data.

I Given practical constraints such as finite training data, no
pattern classification method is inherently superior to any
other.
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Estimating and Comparing Classifiers

I Classification error can be estimated using misclassification
and false alarm rates.

I To compare learning algorithms, we should use
independent training and test data generated using

I static division,
I rotated division (e.g., cross-validation),
I bootstrap methods.

I Using the error on points not in the training set (also called
the off-training set error ) is important for evaluating the
generalization ability of an algorithm.
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Combining Classifiers

I Just like different features capturing different properties of a pattern,
different classifiers also capture different structures and relationships of
these patterns in the feature space.

I An empirical comparison of different classifiers can help us choose one
of them as the best classifier for the problem at hand.

I However, although most of the classifiers may have similar error rates,
sets of patterns misclassified by different classifiers do not necessarily
overlap.

I Not relying on a single decision but rather combining the advantages of
different classifiers is intuitively promising to improve the overall
accuracy of classification.

I Such combinations are variously called combined classifiers, ensemble
classifiers, mixture-of-expert models, or pooled classifiers.
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Combining Classifiers

I Some of the reasons for combining multiple classifiers to solve a
given classification problem can be stated as follows:

I Access to different classifiers, each developed in a different
context and for an entirely different
representation/description of the same problem.

I Availability of multiple training sets, each collected at a
different time or in a different environment, even may use
different features.

I Local performances of different classifiers where each
classifier may have its own region in the feature space where
it performs the best.

I Different performances due to different initializations and
randomness inherent in the training procedure.
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Combining Classifiers

I In summary, we may have different feature sets, training
sets, classification methods, and training sessions, all
resulting in a set of classifiers whose outputs may be
combined.

I Combination architectures can be grouped as:
I Parallel: all classifiers are invoked independently and then

their results are combined by a combiner.
I Serial (cascading): individual classifiers are invoked in a

linear sequence where the number of possible classes for a
given pattern is gradually reduced.

I Hierarchical (tree): individual classifiers are combined into a
structure, which is similar to that of a decision tree, where
the nodes are associated with the classifiers.
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Combining Classifiers

I Examples of classifier combination schemes are:
I Majority voting where each classifier makes a binary

decision (vote) about each class and the final decision is
made in favor of the class with the largest number of votes.

I Bayesian combination: sum, product, maximum, minimum
and median of the posterior probabilities from individual
classifiers.

I Bagging where multiple classifiers are built by bootstrapping
the original training set.

I Boosting where a sequence of classifiers is built by training
each classifier using data sampled from a distribution
derived from the empirical misclassification rate of the
previous classifier.
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Structural and Syntactic Pattern Recognition

I Statistical pattern recognition attempts to classify patterns
based on a set of extracted features and an underlying
statistical model for the generation of these patterns.

I Ideally, this is achieved with a rather straightforward
procedure:

I determine the feature vector,
I train the system,
I classify the patterns.

I Unfortunately, there are also many problems where
patterns contain structural and relational information that
are difficult or impossible to quantify in feature vector form.
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Structural and Syntactic Pattern Recognition

I Structural pattern recognition assumes that pattern
structure is quantifiable and extractable so that structural
similarity of patterns can be assessed.

I Typically, these approaches formulate hierarchical
descriptions of complex patterns built up from simpler
primitive elements.

I This structure quantification and description are mainly
done using:

I Formal grammars,
I Relational descriptions (principally graphs).

I Then, recognition and classification are done using:
I Parsing (for formal grammars),
I Relational graph matching (for relational descriptions).
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