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Edge detection

� Edge detection is the process of finding 
meaningful transitions in an image.

� The points where sharp changes in the brightness 
occur typically form the border between different 
objects or scene parts.

� These points can be detected by computing 
intensity differences in local image regions.
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� Initial stages of mammalian vision systems also 
involve detection of edges and local features.



Edge detection

� Sharp changes in the image brightness occur at:
� Object boundaries

A light object may lie on a dark background or a dark object � A light object may lie on a dark background or a dark object 
may lie on a light background.

� Reflectance changes
� May have quite different characteristics - zebras have stripes, 

and leopards have spots.

� Cast shadows

� Sharp changes in surface orientation

CS 484, Spring 2010 ©2010, Selim Aksoy 3

� Sharp changes in surface orientation

� Further processing of edges into lines, curves and 
circular arcs result in useful features for matching 
and recognition.



Edge detection

� Basic idea: look for a neighborhood with strong 
signs of change.

� Problems:

� Neighborhood size

� How to detect change

� Differential operators:

� Attempt to approximate the gradient at a pixel via 
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Attempt to approximate the gradient at a pixel via 
masks.

� Threshold the gradient to select the edge pixels.



Edge models
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Difference operators for 1D
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Adapted from Gonzales and Woods



Difference operators for 1D
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Adapted from Gonzales and Woods



Edge detection

� Three fundamental steps in edge detection:

1. Image smoothing: to reduce the effects of 1. Image smoothing: to reduce the effects of 
noise.

2. Detection of edge points: to find all image 
points that are potential candidates to become 
edge points.

3. Edge localization: to select from the candidate 
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3. Edge localization: to select from the candidate 
edge points only the points that are true 
members of an edge.



Difference operators for 1D
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Adapted from Shapiro and Stockman



Difference operators for 1D
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Adapted from Shapiro and Stockman



Observations

� Properties of derivative masks:

� Coordinates of derivative masks have opposite signs in 
order to obtain a high response in signal regions of high order to obtain a high response in signal regions of high 
contrast.

� The sum of coordinates of derivative masks is zero so 
that a zero response is obtained on constant regions.

� First derivative masks produce high absolute values at 
points of high contrast.
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points of high contrast.

� Second derivative masks produce zero-crossings at 
points of high contrast.



Smoothing operators for 1D
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Observations

� Properties of smoothing masks:

� Coordinates of smoothing masks are positive and sum 
to one so that output on constant regions is the same to one so that output on constant regions is the same 
as the input.

� The amount of smoothing and noise reduction is 
proportional to the mask size.

� Step edges are blurred in proportion to the mask size.
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Difference operators for 2D
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Difference operators for 2D
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Difference operators for 2D
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Adapted from Gonzales and Woods



Difference operators for 2D
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original image               gradient              thresholded
magnitude              gradient

magnitude

Adapted from Linda Shapiro, U of Washington



Difference operators for 2D
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Difference operators for 2D
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Difference operators for 2D
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Gaussian smoothing and edge detection

� We can smooth the image using a Gaussian filter 
and then compute the derivative.

� Two convolutions: one to smooth, then another 
one to differentiate?

� Actually, no - we can use a derivative of 

Gaussian filter because differentiation is 
convolution and convolution is associative.
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Derivative of Gaussian
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Adapted from Michael Black, Brown University



Derivative of Gaussian
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Adapted from Michael Black, Brown University



Derivative of Gaussian
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Adapted from Martial Hebert, CMU



Difference operators for 2D
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Gaussian smoothing and edge detection
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Gaussian smoothing and edge detection
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Adapted from Shapiro and Stockman



Gaussian smoothing and edge detection
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Adapted from Steve Seitz, U of Washington



Laplacian of Gaussian
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Adapted from Gonzales and Woods



Laplacian of Gaussian
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Adapted from Shapiro and Stockman



Laplacian of Gaussian

sigma=4

Gradient threshold=1 Gradient threshold=4

LoG zero crossings
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sigma=2

Adapted from David Forsyth, UC Berkeley



Canny edge detector

� Canny defined three objectives for edge 
detection:

1. Low error rate: All edges should be found and there 
should be no spurious responses.

2. Edge points should be well localized: The edges 
located must be as close as possible to the true edges.

3. Single edge point response: The detector should 
return only one point for each true edge point. That is, 
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return only one point for each true edge point. That is, 
the number of local maxima around the true edge 
should be minimum.



Canny edge detector

1. Smooth the image with a Gaussian filter with 
spread σ.

2. Compute gradient magnitude and direction at 2. Compute gradient magnitude and direction at 
each pixel of the smoothed image.

3. Zero out any pixel response less than or equal to 
the two neighboring pixels on either side of it, 
along the direction of the gradient (non-maxima 
suppression).
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suppression).

4. Track high-magnitude contours using 
thresholding (hysteresis thresholding).

5. Keep only pixels along these contours, so weak 
little segments go away.



Canny edge detector

� Non-maxima suppression:

� Gradient direction is used to 
thin edges by suppressing thin edges by suppressing 
any pixel response that is 
not higher than the two 
neighboring pixels on either 
side of it along the direction 
of the gradient.

� This operation can be used 
with any edge operator 
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with any edge operator 
when thin boundaries are 
wanted.

Note: Brighter squares illustrate 
stronger edge response.

Adapted from Martial Hebert, CMU



Canny edge detector

� Hysteresis thresholding:

� Once the gradient magnitudes are thinned, high 
magnitude contours are tracked.magnitude contours are tracked.

� In the final aggregation phase, continuous contour 
segments are sequentially followed.

� Contour following is initiated only on edge pixels where 
the gradient magnitude meets a high threshold.

� However, once started, a contour may be followed 
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� However, once started, a contour may be followed 
through pixels whose gradient magnitude meet a lower 
threshold (usually about half of the higher starting 
threshold).



Canny edge detector
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Adapted from Martial Hebert, CMU



Canny edge detector
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Adapted from Martial Hebert, CMU



Canny edge detector

CS 484, Spring 2010 ©2010, Selim Aksoy 38

Adapted from Martial Hebert, CMU



Canny edge detector
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Adapted from Martial Hebert, CMU



Canny edge detector
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Canny edge detector
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Canny edge detector

� The Canny operator gives single-pixel-wide 
images with good continuation between adjacent 
pixels.pixels.

� It is the most widely used edge operator today; 
no one has done better since it came out in the 
late 80s. Many implementations are available.

� It is very sensitive to its parameters, which need 
to be adjusted for different application domains.
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to be adjusted for different application domains.



Edge linking

� Hough transform

� Finding line segments

� Finding circles

� Model fitting

� Fitting line segments

� Fitting ellipses

� Edge tracking
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Edge tracking



Hough transform

� The Hough transform is a method for detecting 
lines or curves specified by a parametric function.

� If the parameters are p1, p2, … pn, then the 
Hough procedure uses an n-dimensional 
accumulator array in which it accumulates votes 
for the correct parameters of the lines or curves 
found on the image.

b
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y = mx + b

image m

b

accumulator

Adapted from Linda Shapiro, U of Washington



Hough transform: line segments
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Adapted from Steve Seitz, U of Washington



Hough transform: line segments
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Adapted from Steve Seitz, U of Washington



Hough transform: line segments
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Adapted from Gonzales and Woods



Hough transform: line segments

� y = mx + b is not suitable (why?)

� The equation generally used is:� The equation generally used is:

d = r sin(θ) + c cos(θ).

d

θ
c

d is the distance from the line to origin.
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d

r
θ is the angle the perpendicular makes

with the column axis.

Adapted from Linda Shapiro, U of Washington



Hough transform: line segments
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Adapted from Shapiro and Stockman



Hough transform: line segments
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Hough transform: line segments
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Hough transform: line segments

� Extracting the line segments from the 
accumulators:

1. Pick the bin of A with highest value V

2. While V > value_threshold {

1. order the corresponding pointlist from PTLIST

2. merge in high gradient neighbors within 10 degrees

3. create line segment from final point list
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create line segment from final point list

4. zero out that bin of A

5. pick the bin of A with highest value V

}

Adapted from Linda Shapiro, U of Washington



Hough transform: line segments
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Hough transform: line segments
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Hough transform: circles

� Main idea: The gradient vector at an edge pixel 
points the center of  the circle.

� Circle equations:

� r = r0 + d sin(θ)            r0, c0, d are parameters

� c = c0 + d cos(θ)
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*(r,c)
d

Adapted from Linda Shapiro, U of Washington



Hough transform: circles
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Adapted from Shapiro and Stockman



Hough transform: circles
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Adapted from Shapiro and Stockman



Hough transform: circles
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Adapted from Shapiro and Stockman



Model fitting

� Mathematical models that fit data not only reveal 
important structure in the data, but also can provide 
efficient representations for further analysis.efficient representations for further analysis.

� Mathematical models exist for lines, circles, cylinders, and 
many other shapes.

� We can use the method of least squares for determining 
the parameters of the best mathematical model fitting the 
observed data.
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Model fitting: line segments
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Adapted from Martial Hebert, CMU



Model fitting: line segments
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Model fitting: line segments
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Model fitting: line segments
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Model fitting: line segments

� Problems in fitting:

� Outliers

� Error definition (algebraic vs. geometric distance)

� Statistical interpretation of the error (hypothesis 
testing)

� Nonlinear optimization

� High dimensionality (of the data and/or the number of 
model parameters)
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model parameters)

� Additional fit constraints



Model fitting: ellipses
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Model fitting: ellipses
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Adapted from Andrew Fitzgibbon, PAMI 1999



Model fitting: ellipses
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Adapted from Andrew Fitzgibbon, PAMI 1999



Model fitting: incremental line fitting
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Adapted from David Forsyth, UC Berkeley



Model fitting: incremental line fitting
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Adapted from Trevor Darrell, MIT



Model fitting: incremental line fitting
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Adapted from Trevor Darrell, MIT



Model fitting: incremental line fitting
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Adapted from Trevor Darrell, MIT



Model fitting: incremental line fitting
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Adapted from Trevor Darrell, MIT



Model fitting: incremental line fitting
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Adapted from Trevor Darrell, MIT



Edge tracking

� Mask-based approach uses masks to identify the 
following events:

� start of a new segment,

� interior point continuing a segment,

� end of a segment,

� junction between multiple segments,

� corner that breaks a segment into two.

junction
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corner

Adapted from Linda Shapiro, U of Washington



Edge tracking: ORT Toolkit

� Designed by Ata Etemadi.

� The algorithm is called Strider and is like a spider moving 
along pixel chains of an image, looking for junctions and along pixel chains of an image, looking for junctions and 
corners.

� It identifies them by a measure of local asymmetry.
� When it is moving along a straight or curved segment with no 

interruptions, its legs are symmetric about its body.

� When it encounters an obstacle (i.e., a corner or junction) its legs 
are no longer symmetric.

� If the obstacle is small (compared to the spider), it soon becomes 
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� If the obstacle is small (compared to the spider), it soon becomes 
symmetrical.

� If the obstacle is large, it will take longer.

� The accuracy depends on the length of the spider and the 
size of its stride.
� The larger they are, the less sensitive it becomes.



Edge tracking: ORT Toolkit

The measure of asymmetry is the angle
between two line segments.

L1: the line segment from pixel 1 of the spider
to pixel N-2 of the spider

L2: the line segment from pixel 1 of the spider

angle 0
here
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L2: the line segment from pixel 1 of the spider
to pixel N of the spider

The angle must be <= arctan(2/length(L2))

Longer spiders allow less of an angle. 
Adapted from Linda Shapiro, U of Washington



Edge tracking: ORT Toolkit

� The parameters are the length of the spider and 
the number of pixels per step.

These parameters can be changed to allow for � These parameters can be changed to allow for 
less sensitivity, so that we get longer line 
segments.

� The algorithm has a final phase in which adjacent 
segments whose angle differs by less than a given 
threshold are joined.
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threshold are joined.

� Advantages:
� Works on pixel chains of arbitrary complexity.

� Can be implemented in parallel.

� No assumptions and parameters are well understood.



Example: building detection
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by Yi Li @ University of Washington



Example: building detection
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Example: object extraction

by Serkan Kiranyaz
Tampere University of Technology
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Example: object extraction
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Example: object extraction
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Example: object extraction

CS 484, Spring 2010 ©2010, Selim Aksoy 83



Example: object recognition

� Mauro Costa’s dissertation at the University of 
Washington for recognizing 3D objects having 
planar, cylindrical, and threaded surfaces:planar, cylindrical, and threaded surfaces:

� Detects edges from two intensity images.

� From the edge image, finds a set of high-level features 
and their relationships.

� Hypothesizes a 3D model using relational indexing.

Estimates the pose of the object using point pairs, line 
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� Estimates the pose of the object using point pairs, line 
segment pairs, and ellipse/circle pairs.

� Verifies the model after projecting to 2D.



Example: object recognition
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Example scenes used. The labels “left” and “right” indicate the direction of the light source.
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Example: object recognition
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Example: object recognition
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Example: object recognition

1 coaxials-
multi

2 ellipse
encloses

encloses
1        1        2       3
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3 parallel
lines

2 ellipse
encloses

coaxial 2        3        3       2 

e          e            e           c

Relationship graph and the corresponding 2-graphs.



Example: object recognition

� Learning phase: 
relational indexing by 
encoding each 2-graph encoding each 2-graph 
and storing in a hash 
table.

� Matching phase: 
voting by each 2-graph 
observed in the image.
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observed in the image.



Example: object recognition

1. The matched features of 
the hypothesized object 

Incorrect hypothesis

the hypothesized object 
are used to determine 
its pose.

2. The 3D mesh of the 
object is used to project 
all its features onto the 
image.

3. A verification 
procedure checks how 
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procedure checks how 
well the object features 
line up with edges on 
the image.


