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Edge detection

= Edge detection is the process of finding
meaningful transitions in an image.

= The points where sharp changes in the brightness
occur typically form the border between different
objects or scene parts.

= These points can be detected by computing
intensity differences in local image regions.

= Initial stages of mammalian vision systems also
involve detection of edges and local features.
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Edge detection

= Sharp changes in the image brightness occur at:

= Object boundaries

= A light object may lie on a dark background or a dark object
may lie on a light background.

= Reflectance changes

= May have quite different characteristics - zebras have stripes,
and leopards have spots.

= Cast shadows
» Sharp changes in surface orientation

= Further processing of edges into lines, curves and
circular arcs result in useful features for matching
and recognition.
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Edge detection

= Basic idea: look for a neighborhood with strong
signs of change.

= Problems: 31 8
= Neighborhood size g2
= How to detect change 81 82

= Differential operators:

= Attempt to approximate the gradient at a pixel via
masks.

= Threshold the gradient to select the edge pixels.
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Edge models

abc

B S .
From left to right,

models (ideal
representations) of
a step, a ramp, and
aroof edge, and
their corresponding
intensity profiles.

FIGURE 10.9 A 1508 x 1970 image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)
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Difference operators for 1D
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Adapted from Gonzales and Woods
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FIGURE 10.10

(a) Two regions of
constant intensity
separated by an
ideal vertical
ramp edge.

(b) Detail near
the edge, showing
a horizontal
intensity profile,
together with its
first and second
derivatives.



Difference operators for 1D
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FIGURE 10.11 First column: Images and intensity profiles of a ramp edge corrupted by
random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0
intensily levels. respeclively. Second column: First-derivalive images and inlensily
profiles. Third column: Second-derivative images and intensity profiles.

Adapted from Gonzales and Woods
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Edge detection

= Three fundamental steps in edge detection:
1. Image smoothing: to reduce the effects of

noise.

2. Detection of edge points: to find all image
points that are potential candidates to become

edge

3. Edge
edge

Noints.
ocalization: to select from the candidate

noints only the points that are true

members of an edge.
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Difference operators for 1D

mask M = [-1,0,1]
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(b) S is a downward step edge

[Ss] | Jreljr]joe]r]is]is]2r]24]24]24
(Sa|o[M[ o[ 0] 0of 3] 6] 6] 6] 3[0]0]

(¢) Sz is an upward ramp
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(d) S4 is a bright impulse or “line”

Figure 5.11: Cross correlation of four special signals with first derivative edge detecting
mask [—1,0,1]; (a) upward step edge, (b) downward step edge, (¢) upward ramp, and (d)
bright impulse. Note that, since the coordinates of M sum to zero, output must be zero on

a constant region. Adapted from Shapiro and Stockman
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Difference operators for 1D

mask M = [-1,2, —1]
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(a) Sy is an upward step edge
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(b) Sy is a downward step edge
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(¢) S3 is an upward ramp

| Sa ] ] el 224 12]12[12]12]12]
[Sa[@o[MJ 0] 0] 0]-12]24]-12] 0] 0] 0] 0]

(d) S4 1s a bright impulse or “line”

Figure 5.12: Cross correlation of four special signals with second derivative edge detecting
mask M = [—1,2, —1]; (a) upward step edge, (b) downward step edge, (¢) upward ramp,
and (d) bright impulse. Since the coordinates of M sum to zero, response on constant
regions is zero. Note how a zero-crossing appears at an output position where different

trends in the input signal join. Adapted from Shapiro and Stockman
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Observations

= Properties of derivative masks:

» Coordinates of derivative masks have opposite signs in
order to obtain a high response in signal regions of high
contrast.

= The sum of coordinates of derivative masks is zero so
that a zero response is obtained on constant regions.

= First derivative masks produce high absolute values at
points of high contrast.

= Second derivative masks produce zero-crossings at
points of high contrast.
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Smoothing operators for 1D

box smoothing mask M = [1/3,1/3,1/3]

| S]] [rzfref1212]12 2424242424 ]
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(a) Sy 1s an upward step edge
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(d) Sy is a bright impulse or “line”

Gaussian smoothing mask M = [1/4,1/2,1/4]
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(a) S1 is an upward step edge

| S.] | [z 1z[12]12]12]
[(SsJo[MrjR]R]B]R[IB]12]12]12]12]

(d) Sy is a bright impulse or “line”

Figure 5.13: (Top two rows) Smoothing of step and impulse with box mask [1/3,1/3,1/3]
(bottom two rows) smoothing of step and impulse with Gaussian mask [1/4,1/2,1/4].
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Observations

= Properties of smoothing masks:

» Coordinates of smoothing masks are positive and sum

to one so that output on constant regions is the same
as the input.

= The amount of smoothing and noise reduction is
proportional to the mask size.

= Step edges are blurred in proportion to the mask size.
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Difference operators for 2D

e Contrast in the 2D picture function f(x,¥y) can occur

In any direction.

e From calculus, we know that the maximum change
occurs along the direction of the gradient.

e The gradient of an image f(x,y) at location (x,y) is

defined as the vector

Cof af

Vf=

CS 484, Spring 2010 ©2010, Selim Aksoy
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Difference operators for 2D

e The magnitude of the gradient

on-((%) (%))

gives the maximum rate of increase of f(x,y) per unit
distance in the direction of Vf.

e The direction of the gradient

4 [Of Of
£(Vf)=tan™'
(Vi) =tan” (5/50)
represents the direction of this change with respect to
the x-axis.
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Difference operators for 2D
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a
bc
de
f g
FIGURE 10.14
A3 X 3 region of
an image (the z's
are intensily
values) and
various masks
used to compute
the gradient at
the point labeled

Zs.

Gradient vector Grddient vector

! Hdge|direction

abc

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point.
Note that the edge is perpendicular to the direction of the gradient vector at the point
where the gradient is computed. Each square in the figure represents one pixel.

Adapted from Gonzales and Woods
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Difference operators for 2D

original image gradient thresholded
magnitude gradient
magnitude

Adapted from Linda Shapiro, U of Washington
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Difference operators for 2D
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cd

FIGURE 10.16

(a) Original image
of size

834 X 1114 pixels,
with intensity
values scaled to
the range [0, 1].
(b) |8xl, the
component of the
gradient in the
x-direction,
obtained using
the Sobel mask in
Fig. 10.14(f) to
filter the image.
(c) |8yl, obtained
using the mask in
Fig. 10.14(g).

(d) The gradient
image, |8 + [&/.
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Difference operators for 2D

a b
c d

FIGURE 10.18
Samc scqucncce as
in Fig. 10.16, but
with the original
image smoothed
usinga 5 X 5
averaging filter
prior to edge
detection.
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Difference operators for 2D

ab

FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold
selected as 33% of the highest value in the image; this threshold was just high enough to
eliminate most of the brick edges in the gradient image. (b) Thresholded version of the
image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in
that image.
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Gaussian smoothing and edge detection

= We can smooth the image using a Gaussian filter
and then compute the derivative.

= Two convolutions: one to smooth, then another
one to differentiate?

- Actually, no - we can use a derivative of
Gaussian filter because differentiation is
convolution and convolution is associative.
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Derivative of Gaussian

D.®G®N=(D.®G)®I
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Adapted from Michael Black, Brown University
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Derivative of Gaussian

D.®(G®I)=(D.®G)®I




Derivative of Gaussian

Applving the first derivative of Gaussian

Adapted from Martial Hebert, CMU
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Difference operators for 2D

e The Laplacian of a 2D function f(x,y) is a second-order
derivative defined as
2 2
Pf 0

2
Vil= ox2 Oy
e The Laplacian generally is not used in its original form
for edge detection because:
» It Is sensitive to noise.
» Its magnitude produces double edges.
» |t 1s unable to detect edge direction.

e However, its zero-crossing property can be used for edge
localization.
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Gaussian smoothing and edge detection

e 1D Gaussian function:

e Derivative of Gaussian (DoG):

/(1) = —g()

e Laplacian of Gaussian (LoG):
|
/w0 = (5-3) gt
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Gaussian smoothing and edge detection
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Figure 5.19: (a) Gaussian g{x) with spread o = 2; (b) first derivative ¢'(2); (¢) second
derivative ¢”(#), which looks like the cross scction of a sombrero upside down from how it
would be worn; (d) all three plots superimposed to show how the extreme slopes of ¢()

align with the extremas of ¢’(x) and the zero crossings of ¢/ (). Adapted from Shapiro and Stockman
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Gaussian smoothing and edge detection

Laplacian of Gaussian

(Gaussian derivative of Gaussian

2D
i _uctw s,
hea(r, 1) = ¢ 202 —hg i, v
:'J'( ] 2']T|"T2 ﬂ,‘lﬁ' IZT( )

Adapted from Steve Seitz, U of Washington
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Laplacian of Gaussian

ab
]l

FIGURE 10.21

(a) Three-
dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
crossings.

(d) 5 X 5 mask
approximation to
the shape in (a).
The negative of
0 1| =2 | =1 0 this mask would
be used in
practice.

_ _ 0 | -1 ] -=2]-11] 0
Zero Cl'OSSlI'lg —\ /— Zero Cl'OSSlI'lg
~J o | o |-1] 0|
= oz 2

Adapted from Gonzales and Woods
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Laplacian of Gaussian
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Figure 5.22: An 11 x 11 mask approximating the Laplacian of a Gaussian with ¢ = 2.
(From Harlalick and Shapiro, Volume I, page 349.)

CS 484, Spring 2010
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30



Laplacian of Gaussian

sigma=4

LoG zero crossings

sigma=2

Adapted from David Forsyth, UC Berkeley
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Canny edge detector

= Canny defined three objectives for edge
detection:

1. Low error rate: All edges should be found and there
should be no spurious responses.

2. Edge points should be well localized: The edges
located must be as close as possible to the true edges.

3. Single edge point response: The detector should
return only one point for each true edge point. That is,
the number of local maxima around the true edge
should be minimum.
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Canny edge detector

. Smooth the image with a Gaussian filter with
spread O.

. Compute gradient magnitude and direction at
each pixel of the smoothed image.

. Zero out any pixel response less than or equal to
the two neighboring pixels on either side of it,
along the direction of the gradient (non-maxima
suppression).

. Track high-magnitude contours using
thresholding (hysteresis thresholding).

. Keep only pixels along these contours, so weak
little segments go away.
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Canny edge detector

= Non-maxima suppression:

» Gradient direction is used to
thin edges by suppressing
any pixel response that is
not higher than the two
neighboring pixels on either
side of it along the direction
of the gradient.

= This operation can be used

V1

Gradient magnitude at center pixel

is lower than the gradient magnitude

of a neighbor in the direction of the gradient
= Discard center pixel (set magnitude to 0)

VI

Gradient magnitude at center pixel
1s greater than gradient magnitude

i of all the neighbors in the direction
with any edge oper_ator e e
When th|n bOU ndarleS are - Keep center pixel unchanged
wanted. .

Note: Brighter squares illustrate
stronger edge response.

Adapted from Martial Hebert, CMU
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Canny edge detector

= Hysteresis thresholding:

= Once the gradient magnitudes are thinned, high
magnitude contours are tracked.

= In the final aggregation phase, continuous contour
segments are sequentially followed.

= Contour following is initiated only on edge pixels where
the gradient magnitude meets a high threshold.

» However, once started, a contour may be followed
through pixels whose gradient magnitude meet a lower
threshold (usually about half of the higher starting
threshold).
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Canny edge detector

|

" .ﬁ
Weak pixels but connected . .
= Weak pixels but isolated

\
\

Very strong edge response. Weaker response but it is Continue
Let’s start here connected to a confirmed
edge point. Let's keep it.

Note: Darker squares illustrate stronger edge response (larger M)

Adapted from Martial Hebert, CMU
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Canny edge detector

CS 484, Spring 2010

1. Compute x and y derivatives of Image

Iy =GEx1 Iy=Gg=1I

2. Compute magnitude of gradient at every

pixel
M(z,y) = |VI| = /17 + Ig

3. Eliminate those pixels that are not local
maxima of the magnitude in the direction
of the gradient

4. Hysteresis Thresholding

e Select the pixels such that M > T}, (high
threshold)

e Collect the pixels such that M > T; (low
threshold) that are neighbors of already
collected edge points

Adapted from Martial Hebert, CMU
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Canny edge detector

[nput image

Adapted from Martial Hebert, CMU
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Canny edge detector

T=15| e F T=5
o] '.a'.-“%
Hysteresis
1,=151,=5
Hysteresis
thresholding

Adapted from Martial Hebert, CMU
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Canny edge detector

ab
cd

FIGURE 10.25

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0,1].

(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.

(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.
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Canny edge detector

CS 484, Spring 2010
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FIGURE 10.26
(a) Original head
CT image of size
512 X 512 pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.
(d) Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
anderbill
University.)
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Canny edge detector

= The Canny operator gives single-pixel-wide
images with good continuation between adjacent
pixels.

= It is the most widely used edge operator today;
no one has done better since it came out in the
late 80s. Many implementations are available.

= It is very sensitive to its parameters, which need
to be adjusted for different application domains.

CS 484, Spring 2010 ©2010, Selim Aksoy
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Edge linking

= Hough transform
» Finding line segments
« Finding circles

= Model fitting

» Fitting line segments
» Fitting ellipses
= Edge tracking

CS 484, Spring 2010 ©2010, Selim Aksoy
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Hough transform

= The Hough transform is a method for detecting
lines or curves specified by a parametric function.

= If the parameters are p,, p,, ... P, then the
Hough procedure uses an n-dimensional
accumulator array in which it accumulates votes
for the correct parameters of the lines or curves
found on the image.

image

CS 484, Spring 2010

.

y=mx+Db

b

_

©2010, Selim Aksoy

accumulator

Adapted from Linda Shapiro, U of Washingt%réll



Hough transform: line segments

if = Tor + ip.-:
/

= =
X m, m

image space Hough space

Connection between image (x,y) and Hough (m,b) spaces
+ Aline in the image corresponds to a point in Hough space

* To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx +b

Adapted from Steve Seitz, U of Washington
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Hough transform: line segments

y,.l b Y
° b= —zpm + ung
ﬁ-
Yo
i -
image space Hough space

Connection between image (x,y) and Hough (m,b) spaces

= Aline in the image corresponds to a point in Hough space

+ To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx +b

+ What does a point (x,, y,) in the image space map to?

— A the solutions of b = -xym + vy,

— this is a line in Hough space

Adapted from Steve Seitz, U of Washington
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Hough transform: line segments

FIGURE 10.18 a0 Dmin 0 Prmax 5
Subdivision of the min "
parameter plane .
for use 1n the .
Hough transform.
(| === 'Y
HI'I'I.'IX
)
a ; a b
: - ) : -
| FIGURE 10.17
I
| b=—xa-+y, (a) xy-plane.
5. ) | ' (b) Parameter
& (X, ¥ \| space.
|
I

b = —XJ,-H + _‘_I.-J.
1r T

a Adapted from Gonzales and Woods
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Hough transform: line segments

= Y = mX + b is not suitable (why?)
= [he equation generally used is:
d = r sin(B) + c cos(0).

C
0
; d is the distance from the line to origin.
0 is the angle the perpendicular makes
r with the column axis.

Adapted from Linda Shapiro, U of Washington
CS 484, Spring 2010 ©2010, Selim Aksoy 48



Hough transform: line segments

CS 484, Spring 2010

Accumulate the straight line segments in gray-tone image S to accumulator A.
S[R, C] is the input gray-tone image.

NLINES is the number of rows in the image.

NPIXELS is the number of pixels per row.

A[DQ, THETAQ)] is the accumulator array.

DQ is the quantized distance from a line to the origin.

THETAQ is the quantized angle of the normal to the line.

procedure accumulate_lines(S,A);

{
A =0
PTLIST := NIL;

for R := 1 to NLINES
for C := 1 to NPIXELS

i{)R = row_gradient(S,R,C);

DC := col_gradient(S,R,C);

GMAG = gradient(DR,DC);

if GMAG > gradient_threshold
{
THETA := atan2(DR,DC);
THETAQ := quantize_angle(THETA);
D := abs(C*cos(THETAQ) - R*sin(THETAQ));
DQ := quantize_distance(D);
A[DQ, THETAQ] := A[DQ, THETAQ]+GMAG:;
PTLIST(DQ,THETAQ) := append(PTLIST(DQ,THETAQ),[R,C])
1

}

Adapted from Shapir

0 and Stockman

49

Algorithm 7: Hough Transform for Finding Straight Lines



Hough transform: line segments

CS 484, Spring 2010 ©2010, Selim Aksoy
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Hough transform: line segments

CS 484, Spring 2010 ©2010, Selim Aksoy
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Hough transform: line segments

= Extracting the line segments from the
accumulators:

1. Pick the bin of A with highest value V

2. While V > value_threshold {
1. order the corresponding pointlist from PTLIST
2. merge in high gradient neighbors within 10 degrees
3. create line segment from final point list
4. zero out that bin of A
s. pick the bin of A with highest value V

Adapted from Linda Shapiro, U of Washington
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Hough transform: line segments

CS 484, Spring 2010

©2010, Selim Aksoy

a b

c d

FIGURE 10.21

(a) Infrared
image.

(b) Thresholded
eradient image.
(c) Hough
transform.

(d) Linked pixels.
(Courtesy of Mr.
D. R. Cate, Texas
[nstruments, Inc.)
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Hough transform: line segments

cde

FIGURE 10.34 (a) A 502 X 564 aerial image of an airport. (b) Edge image obtained using Canny’s algorithm.
(c) Hough parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in
the image plane corresponding to the points highlighted by the boxes). (e) Lines superimposed on the
original image.
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Hough transform: circles

= Main idea: The gradient vector at an edge pixel
points the center of the circle.

= Circle equations:
s I =r, + dsin(B) ror Co, d @re parameters
= C=C, + d cos(B)

*(r,c)

Adapted from Linda Shapiro, U of Washington
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Hough transform: circles

CS 484, Spring

Accumulate the cireles in gray-tone image S to accumulator A,
S[R, C] is the input gray-tone irnage.

NLINES is the number of rows in the image.

NPIXELS is the number of pixels per row.

AR, C, RAD] is the accumulator array.

R is the row index of the circle center.

C is the column index ol the circle cenier.

RAD is the radius of the circle.

procedure accumulate_cireles(S,A):

{
A:=0;
PTLIST := 0;

for R := 1 to NLINES
for C := 1 to NPIXELS
for cach possible value RAD of radins
(
THETA := compute_theta(S.R,C,RAD);
RO := R — RADYcos(THETA);
C0 := C - RAD*sin(THETA);
A[RD,CO.RAD] := A[RD,CO,RAD]|+1;
PTLIST(R0,C0,RAD) := append(PTLIST(R0,C0,RAD),[R,(])

}

Adapted from Shapiro and St

bckman

56

Algorithm 9: Hough Transform for Finding Circles



Hough transform: circles
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Hough transform: circles

(@) (b)

(d)

Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for r = 3. (d) Resuits of maxima detection.

Adapted from Shapiro and Stockman

©2010, Selim Aksoy
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Model fitting

= Mathematical models that fit data not only reveal
important structure in the data, but also can provide
efficient representations for further analysis.

= Mathematical models exist for lines, circles, cylinders, and
many other shapes.

= We can use the method of least squares for determining
the parameters of the best mathematical model fitting the
observed data.

+*
L
[ ot
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Model fitting: line segments

Model Fitting

Adapted from Martial Hebert, CMU
CS 484, Spring 2010 ©2010, Selim Aksoy 60



Model fitting: line segments

e Given a set of observed points {(z;,v;),i =1,...,n}.

e A straight line can be modeled as a function with two parameters:
y = axr + b.

e [o measure how well a model fits a set of n observations can be
computed using the least-squares error criteria:

=1

where ax; + b — vy; is the algebraic distance.

e [he best model is the model with the paramaters minimizing this
criteria.
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Model fitting: line segments

e For the model y = ax+ b, the parameters that minimize
LSE can be found by taking partial derivatives and
solving for the unknowns.

e [he parameters of the best line are:
Z o Z L
Z Az Z 1

| i=1 i=1

vertical offsets
CS 484, Spring 2010

©2010, Selim Aksoy

1 —1

n

> Xy

=1

n

> Yi

=1
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Model fitting: line segments

e |f we use the geometric distance where ax + by + ¢ = 0
and a®+b*> = 1, the solution for [a b]! is the eigenvector
corresponding to the smallest eigenvalue of

B n : n ) n n n
Yot (Tw)  Taw— (L) (Sw)
1=1 =1 =1

n n =1 n n X =1 n 2
D> Tilfi — (Z ifzf) (Z yz) >y — (Z y-z:)
| =1 =1 =1 =1 1=1
n n
and C = —GZIE—Z)ZUZ \‘__
1=1 1=1 _r
.

-
-
-
-
2N

perpendicul ar offsets

CS 484, Spring 2010 ©2010, Selim Aksoy
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Model fitting: line segments

= Problems in fitting:

Outliers
Error definition (algebraic vs. geometric distance)

Statistical interpretation of the error (hypothesis
testing)

Nonlinear optimization

High dimensionality (of the data and/or the number of
model parameters)

Additional fit constraints
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Model fitting: ellipses

e Fitting a general conic represented by a second-order
polynomial

ar’ + bry + (33/2 +der+ey+ f=0

can be approached by minimizing the sum of squared
algebraic distances.

e See Fitzgibbon et al. (PAMI 1999) for an algorithm
that constrains the parameters so that the conic
representation is forced to be an ellipse.
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h

Model fitting: ellipses

X,y are vectors of coordinates

function a=fit_ellipse(x,y)

/
/
/
/
Z

h

Build design matrix

D=1[ x.*x x.*y y.*y X v ones(size(x)) 1;
Build scatter matrix

S = D?%xD;

Build 6x6 constraint matrix

C(6,6)=0; C(1,3)=-2; C(2,2)=1; C(3,1)=-2;
Solve generalised eigensystem

[gevec, geval] = eig(S,C);

Find the only negative eigenvalue

[NegR, NegCl = find(geval<0 & ~isinf(geval));
Get fitted parameters

a = gevec(:,NegC);

Simple six-line Matlab implementation of the ellipse fitting method.

Adapted from Andrew Fitzgibbon, PAMI 1999
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Model fitting: ellipses

Sigmea=0.03 : Sigma=0.05 Sigma=0.07 Sigma=0.09 Sigma=0.13
GAND | @ & f f /

Fits to arc of ellipse with increasing noise level.

Adapted from Andrew Fitzgibbon, PAMI 1999
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Model fitting: incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list, in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve

Transter first few points on the curve to the line point list

Fit line to line point list

While fitted line is good enough

Transter the next point on the curve
to the line point list and refit the line

e

Transter last point(s) back to curve

Hefit line

Attach line to line list
el

Adapted from David Forsyth, UC Berkeley
CS 484, Spring 2010 ©2010, Selim Aksoy 68




Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT
CS 484, Spring 2010 ©2010, Selim Aksoy 69



Model fitting: incremental line fitting

Adapted from Trevor Darrell, MIT
CS 484, Spring 2010 ©2010, Selim Aksoy 70



Model fitting: incremental line fitting

\.\

Adapted from Trevor Darrell, MIT
CS 484, Spring 2010 ©2010, Selim Aksoy 71



Model fitting: incremental line fitting

\.-v\-

Adapted from Trevor Darrell, MIT
CS 484, Spring 2010 ©2010, Selim Aksoy 72



Model fitting: incremental line fitting

\.v\-

Adapted from Trevor Darrell, MIT
CS 484, Spring 2010 ©2010, Selim Aksoy 73



Edge tracking

= Mask-based approach uses masks to identify the
following events:
» start of a new segment,
= Interior point continuing a segment, junction
» end of a segment, \ /
= junction between multiple segments,
= corner that breaks a segment into two. /

corner

Adapted from Linda Shapiro, U of Washington
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Edge tracking: ORT Toolkit

= Designed by Ata Etemad..

= The algorithm is called Strider and is like a spider moving
along pixel chains of an image, looking for junctions and
corners.

= It identifies them by a measure of local asymmetry.

« When it is moving along a straight or curved segment with no
interruptions, its legs are symmetric about its body.

= When it encounters an obstacle (i.e., a corner or junction) its legs
are no longer symmetric.

» If the obstacle is small (compared to the spider), it soon becomes
symmetrical.

« If the obstacle is large, it will take longer.

= The accuracy depends on the length of the spider and the
size of its stride.

= The larger they are, the less sensitive it becomes.
CS 484, Spring 2010 ©2010, Selim Aksoy 75



Edge tracking: ORT Toolkit

The measure of asymmetry is the angle

between two line segments. =

I:I|:||:I
_

L

1: the line segment from pixel 1 of the spider

[
angle 0 = to pixel N-2 of the spider
here S

O

L2: the line segment from pixel 1 of the spider
to pixel N of the spider

—

N
=

The angle must be <= arctan(2/length(L2))

Longer spiders allow less of an angle.

Adapted from Linda Shapiro, U of Washington
CS 484, Spring 2010 ©2010, Selim Aksoy 76



Edge tracking: ORT Toolkit

= The parameters are the length of the spider and
the number of pixels per step.

= These parameters can be changed to allow for
less sensitivity, so that we get longer line
segments.

= The algorithm has a final phase in which adjacent
segments whose angle differs by less than a given
threshold are joined.

= Advantages:
= Works on pixel chains of arbitrary complexity.
= Can be implemented in parallel.
= No assumptions and parameters are well understood.
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building detection

Example
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Example: building detection
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Example: object extraction

Scale-map .
by Serkan Kiranyaz
e Tampere University of Technology
Frame SRR R
_ Resampling (g o | (a.thr, thry,)
|\ Interpolation | g e ' iz
\ meree ."II Bila‘treral Canny Edge Edge Sub-Segment |
I". F'Gl_lﬁ!:rasse / Filter Detector

Sub-Segment r.
Pre-Proces smg

Pre-Processing

- - | Analysis
Range Mom-Maximum Sﬂﬂlﬁ mﬂp Thinning ub Se gment Direct Linkage Uniform Coet
| Decimation | * and Supression Formation Moisy Edge Earmation Junction Proximity | —=
\ / Domain Hysterigis Filtering
| Filtering

Search Strategy
Decompositicn

VLL
Junction Irrelevant-Loose COST= —
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Example: object extraction

Initial Canny Edge Map Sub-Segment (SS) List
Pre-Processing

Original

Steps .
- MNCL 33 #1
\ Thinning NCL S5 #2
. n

Junction decomp. /
o : v

scale=1 scale=2 scale=13 CL detection s NCL33#3
- N
Endpoint detec_'gion ‘
MNoisy edge removal
o

Figure 6: Sub-segment formation from an initial Canny
edge field.

Start sm\ 5 W/‘--..‘ ——
= S
/1

"y DN~
Darker pixel i A kg ‘\’\_3
intensities — ,'f _-Ml. _\},'__F-)i -"’Hf’ | / ‘l“\rl J e
represent higher Ao 1] ] End State .
scales { ¢ \
«‘_\_ :.- /‘J
s : L_L“\ /
. ¥ N : ~
Figure 5: A sample scale-map formation. Figure 9: State space for a given sub scgment layout.
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Example: object extraction

Original | scale = 1 scale = 2 _ scale =3

Canny Edge Field

Scale-Map Sub-Segments CL Segment

Segmentation
|

Figure 12: 3-scale simplification process over a natural

image and the final CL segment extracted.
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Example: object recognition

= Mauro Costa’s dissertation at the University of
Washington for recognizing 3D objects having
planar, cylindrical, and threaded surfaces:

Detects edges from two intensity images.

From the edge image, finds a set of high-level features
and their relationships.

Hypothesizes a 3D model using relational indexing.

Estimates the pose of the object using point pairs, line
segment pairs, and ellipse/circle pairs.

Verifies the model after projecting to 2D.
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Example: object recognition

N

{d} Image 4 (left) (e} Image 5 (left) {I) Inage 6 (right)

{g) Image 7 {left) (h) Image 8 {right) 1) Image 9 (right)

Example scenes used. The labels “left” and “right” indicate the direction of the light source.
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(b} Original rizht imaze
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(e} Circalar arc features detected

(£} Ellipses detected

Fignre 27: Sample run of the system
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Example: object recognition

(a) Ellipses

f/f//”/ __

\N\u\

(c) Coaxials-multi

ociomas |
|

(e) Parallel-close

CS 484, Spring 2010

(f) U-triple

©2010, Selim Aksoy

P
.\-n__f""' T
S ||
A
(b) Coaxials-3 (g) Z-triple
N
I 1
P \
d >= 40 pixels —*
| P Vo
6 //
VAR J
(d) Parallel-far (i) Y-junction
N

(h) L-junction

(j) V-junction

Figure 2: Features used in this work
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Example: object recognition

~
(a) Share one arc
®
//
~
yd
.
(¢) Share two lines
p

® we\\

—
L © L

(e) Close at extremal points
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N
¢
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Iy
(b) Share one line
L] | ]
O
~
¢ &
J
(d) Coaxial
N
'i\ _ T
l"-xx f’/ \\\
N , /
AN P
VN VA
— ¢
J

(f) Bounding box encloses/

is enclosed by bounding box

Figure 3: Relations between sample pairs of features. 38



Example: object recognition

1 coaxials-

multi \\

MODEL-VIEW

encloses

lines

CS 484, Spring 2010

3 pal‘allel coaxial

©2010, Selim Aksoy

RELATIONS:
a: encloses
b: coaxial

FEATURES:

1: coaxials-multi
2: ellipse

3: parallel lines

@ @ @ &

@ ® G @

Relationship graph and the corresponding 2-graphs.
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Example: object recognition

2-graph  List of Models

= Learning phase: e
relational indexing by \D

nnnnnnnn

enCOd|ng eaCh 2-graph an ——(12.99) (1,2,9,9) MM s MnMay

and storing in a hash

ta b I e " L retrieved list of models
= Matching phase: o

voting by each 2-graph | o

observed in the image. ™ ™« M s

CS 484, Spring 2010 ©2010, Selim Aksoy
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Example: object recognition

Incorrect hypothesis
-

CS 484, Spring 2010

©2010, Selim Aksoy

The matched features of
the hypothesized object
are used to determine
its pose.

The 3D mesh of the
object is used to project
all its features onto the
image.

A verification
procedure checks how
well the object features
line up with edges on
the image.
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