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Image matching

� Image matching is a fundamental aspect of many 
problems in computer vision.

� Object or scene recognition

� Solving for 3D structure from multiple images

� Stereo correspondence

� Image alignment & stitching

� Image indexing and search

Motion tracking
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� Motion tracking

� Find “interesting” pieces of the image.

� Focus attention of algorithms

� Speed up computation



Image matching applications
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Object recognition: Find correspondences between 
feature points in training and test images.



Image matching applications
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3D reconstruction: find correspondences between 
feature points in two images of the same scene.



Image matching applications
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Two images of Rome from Flickr



Image matching applications
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Two images of Rome from Flickr: harder case



Image matching applications
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Two images from NASA Mars Rover: even harder case



Image matching applications
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Two images from NASA Mars Rover: matching using local features



Image matching applications

Stereo correspondence
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Image matching applications

Recognition

Texture recognition
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Texture recognition

Car detection



Image matching applications

3D recognition
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Advantages of local features

� Locality
� features are local, so robust to occlusion and clutter

Distinctiveness� Distinctiveness
� can differentiate a large database of objects

� Quantity
� hundreds or thousands in a single image

� Efficiency
� real-time performance achievable

Generality
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� Generality
� exploit different types of features in different situations



Local features

� What makes a good feature?

� We want uniqueness.

Look for image regions that are unusual.� Look for image regions that are unusual.

� Lead to unambiguous matches in other images.

� How to define “unusual”?

0D structure
not useful for matching

1D structure
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1D structure
edge, can be localized in 1D, 
subject to the aperture problem

2D structure
corner, can be localized in 2D,
good for matching



Local measures of uniqueness

� Suppose we only consider a small window of 
pixels.

� What defines whether a feature is a good or bad 
candidate?
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Local measures of uniqueness

� Local measure of feature uniqueness:

� How does the window change when you shift it?

� Shifting the window in any direction causes a big 
change.
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“flat” region:
no change in all 
directions

“edge”:  
no change along 
the edge direction

“corner”:
significant change 
in all directions



Local features and image matching

� There are three important requirements for 
feature points to have a better correspondence for 
matching:matching:

� Points corresponding to the same scene points should 
be detected consistently over different views.

� They should be invariant to image scaling, rotation and 
to change in illumination and 3D camera viewpoint.

� There should be enough information in the 
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� There should be enough information in the 
neighborhood of the points so that corresponding points 
can be automatically matched.

� These points are also called interest points.



Overview of the approach

( )
interest points

1. Extraction of interest points (characteristic locations).

( )
local descriptor
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1. Extraction of interest points (characteristic locations).

2. Computation of local descriptors.

3. Determining correspondences.

4. Using these correspondences for matching/recognition/etc.



Local features: detection

� Consider shifting the window W by (u,v):

� How do the pixels in W change?

� Auto-correlation function measures
the self similarity of a signal and is
related to the sum-of-squared
difference.

� Compare each pixel before and
after the shift by summing up the

W
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after the shift by summing up the
squared differences (SSD).

� This defines an SSD “error” of E(u,v):



Local features: detection

� Taylor Series expansion of I:

� If the motion (u,v) is assumed to be small, then first 
order approximation is good.
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� Plugging this into the formula on the previous slide...



Local features: detection

� Sum-of-squared differences error E(u,v):
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Local features: detection

� This can be rewritten:

For the example above:
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� For the example above:

� You can move the center of the green window to anywhere on the 
blue unit circle.

� Which directions will result in the largest and smallest E values?

� We can find these directions by looking at the eigenvectors of H.



Quick eigenvector/eigenvalue review

� The eigenvectors of a matrix A are the vectors x that satisfy:

� The scalar λ is the eigenvalue corresponding to x
� The eigenvalues are found by solving:

� In our case, A = H is a 2x2 matrix, so we have

� The solution:
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� The solution:

� Once you know λ, you find x by solving



Local features: detection

� This can be rewritten:

� Eigenvalues and eigenvectors of H:

x-

x+
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� Eigenvalues and eigenvectors of H:
� Define shifts with the smallest and largest change (E value).

� x+ = direction of largest increase in E.

� λ+ = amount of increase in direction x+.

� x- = direction of smallest increase in E.

� λ- = amount of increase in direction x-.



Local features: detection

� How are λ+, x+, λ-, and x- relevant for feature detection?

� What’s our feature scoring function?

Want E(u,v) to be large for small shifts in all directions.� Want E(u,v) to be large for small shifts in all directions.

� The minimum of E(u,v) should be large, over all unit vectors [u v].

� This minimum is given by the smaller eigenvalue (λ-) of H.
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Local features: detection

� Here’s what you do:

� Compute the gradient at each point in the image.

� Create the H matrix from the entries in the gradient.� Create the H matrix from the entries in the gradient.

� Compute the eigenvalues.

� Find points with large response (λ- > threshold).

� Choose those points where λ- is a local maximum as features.
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Local features: detection

� Here’s what you do:

� Compute the gradient at each point in the image.

� Create the H matrix from the entries in the gradient.� Create the H matrix from the entries in the gradient.

� Compute the eigenvalues.

� Find points with large response (λ- > threshold).

� Choose those points where λ- is a local maximum as features.
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Harris detector

� To measure the corner strength:

R = det(H) – k(trace(H))2

wherewhere

trace(H) = λ1 + λ2

det(H) = λ1 x λ2

(λ1 and λ2 are the eigenvalues of H).

� R is positive for corners, negative in edge regions, and 
small in flat regions.
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small in flat regions.

� Very similar to λ- but less expensive (no square root).

� Also called the “Harris Corner Detector” or “Harris 
Operator”.

� Lots of other detectors, this is one of the most popular.



Harris detector
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Harris detector example
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Harris detector example
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R values (red high, blue low)



Harris detector example
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Threshold (R > value)



Harris detector example
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Local maxima of R



Harris detector example
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Harris features (red)



Local features: descriptors

( )
� Descriptors characterize the local neighborhood of 

a point.

( )
local descriptor
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a point.

� Gray values within a square window around the point 
can be used directly.

� Gray value derivatives or differential invariants can also 
be used.



Local features: matching

� We know how to detect good features.

� Next question: how to match them?

( ) ( )=
?
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( ) ( )=
?

� Vector comparison using a distance measure can 
be used.



Local features: matching

� Given a feature in I1, how to find the best match 
in I2?2

1. Define a distance function that compares two 
descriptors.

2. Test all the features in I2, find the one with minimum 
distance.

50
75
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75

200

feature 
distance



Matching examples
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Matching examples
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Local features: matching

� Matches can be improved using local constraints
� neighboring points should match

angles, length ratios should be similar� angles, length ratios should be similar

1α

2α
1

~α
2

~α

1
1

2
2

3
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3



Summary of the approach

� Detection of interest points/regions

� Harris detector

Blob detector based on Laplacian� Blob detector based on Laplacian

� Computation of descriptors for each point

� Gray value patch, differential invariants, steerable filter, SIFT 
descriptor

� Similarity of descriptors

� Correlation, Mahalanobis distance, Euclidean distance

Semi-local constraints
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� Semi-local constraints

� Geometrical or statistical relations between neighborhood points

� Global verification

� Robust estimation of geometry between images



Local features: invariance

� Suppose you rotate the image by some angle.
� Will you still pick up the same features?

What if you change the brightness?� What if you change the brightness?

� What about scale?

� We’d like to find the same features regardless of 
the transformation.
� This is called transformational invariance.

� Most feature methods are designed to be invariant to 
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� Most feature methods are designed to be invariant to 
� Translation, 2D rotation, scale.

� They can usually also handle
� Limited 3D rotations (SIFT works up to about 60 degrees).

� Limited affine transformations (some are fully affine invariant).



Local features: invariance

original translated rotated scaled

Translation Rotation Scale

Is Harris 
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Is Harris 
invariant?

? ? ?

Is correlation 
invariant?

? ? ?



Local features: invariance

original translated rotated scaled

Translation Rotation Scale

Is Harris 
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Is Harris 
invariant?

YES YES NO

Is correlation 
invariant?

YES NO NO



How to achieve invariance?

Need both of the following:

1. Make sure your detector is invariant.

Harris is invariant to translation and rotation.� Harris is invariant to translation and rotation.

� Scale is trickier.

� Common approach is to detect features at many scales using a 
Gaussian pyramid (e.g., MOPS).

� More sophisticated methods find “the best scale” to represent each 
feature (e.g., SIFT).

2. Design an invariant feature descriptor.
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� A descriptor captures the information in a region around the 
detected feature point.

� The simplest descriptor: a square window of pixels.

� What’s this invariant to?

� Let’s look at some better approaches…



Rotation invariance for descriptors

� Find dominant orientation of the image patch.

� This is given by x+, the eigenvector of H corresponding 
to λ (larger eigenvalue).

+

to λ+ (larger eigenvalue).

� Rotate the patch according to this angle.
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Multi-scale Oriented Patches (MOPS)

� Take 40x40 square window around detected feature.

� Scale to 1/5 size (using prefiltering).

Rotate to horizontal.� Rotate to horizontal.

� Sample 8x8 square window centered at feature.

� Intensity normalize the window by subtracting the mean, dividing 
by the standard deviation in the window.

8 pixels
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Multi-scale Oriented Patches (MOPS)

� Extract oriented patches at multiple scales of the 
Gaussian pyramid.
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Scale Invariant Feature Transform (SIFT)

� The SIFT operator developed by David Lowe is 
both a detector and a descriptor that are invariant 
to translation, rotation, scale, and other imaging to translation, rotation, scale, and other imaging 
parameters.
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Overall approach for SIFT

1. Scale space extrema detection

� Search over multiple scales and image locations.

2. Interest point localization

� Fit a model to determine location and scale.

� Select interest points based on a measure of stability.

3. Orientation assignment

� Compute best orientation(s) for each interest point 
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Compute best orientation(s) for each interest point 
region.

4. Interest point description

� Use local image gradients at selected scale and 
rotation to describe each interest point region.



Scale space extrema detection

� Goal: Identify locations and scales that can be 
repeatably assigned under different views of the 
same scene or object.same scene or object.

� Method: search for stable features across multiple 
scales using a continuous function of scale.

� Prior work has shown that under a variety of 
assumptions, the best function is a Gaussian 
function.
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function.

� The scale space of an image is a function L(x,y,σ)
that is produced from the convolution of a 
Gaussian kernel (at different scales) with the input 
image.



Scale space interest points

� Laplacian of Gaussian kernel

� Scale normalized

� Proposed by Lindeberg

� Scale space detection

� Find local maxima across scale/space

� A good “blob” detector
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Scale space interest points

� Scale space function L

� Gaussian convolution

where σ is the width of the Gaussian

� Difference of Gaussian kernel is a close approximation to scale-
normalized Laplacian of Gaussian.

2 scales: σ and kσ
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� Can approximate the Laplacian of Gaussian kernel with a difference 
of separable convolutions.



Lowe’s pyramid scheme
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For each octave of scale space, the initial image is repeatedly convolved with Gaussian 

to produce the set of scale space images (left). Adjacent Gaussian images are 
subtracted to produce difference of Gaussian images (right). After each octave Gaussian 
image is downsampled by a factor of 2.



Interest point localization

� Detect maxima and 
minima of difference of 
Gaussian in scale space.Gaussian in scale space.

� Each point is compared to 
its 8 neighbors in the 
current image and 9 
neighbors each in the 
scales above and below.
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� Select only if it is greater 
or smaller than all the 
others.

� For each max or min 
found, output is the 
location and the scale.



Orientation assignment

� Create histogram of local 
gradient directions computed at 
selected scale.selected scale.

� Assign canonical orientation at 
peak of smoothed histogram.

� Each key specifies stable 2D 
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� Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation).

0 2π



Interest point descriptors

� At this point, each interest point has

� location,

� scale,

� orientation.

� Next step is to compute a descriptor for the local 
image region about each interest point that is

� highly distinctive,
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� invariant as possible to variations such as changes in 
viewpoint and illumination.



Lowe’s interest point descriptor

� Use the normalized circular region about the interest point.

� Rotate the window to standard orientation.

Scale the window size based on the scale at which the point was � Scale the window size based on the scale at which the point was 
found.

� Compute gradient magnitude and orientation at each point 
in the region.

� Weight them by a Gaussian window overlaid on the circle.

� Create an orientation histogram over the 4x4 subregions of 
the window.
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the window.

� 4x4 descriptors over 16x16 sample array were used in 
practice. 4x4 times 8 directions gives a vector of 128 
values.



Lowe’s interest point descriptor
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An input image Overlayed descriptors

Adapted from www.vlfeat.org



Example applications

� Object and scene recognition

� Stereo correspondence� Stereo correspondence

� 3D reconstruction

� Image alignment & stitching

� Image indexing and search

� Motion tracking

Robot navigation
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� Robot navigation



Examples: 3D recognition
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Examples: 3D reconstruction
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Examples: location recognition
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Examples: robot localization

CS 484, Spring 2010 ©2010, Selim Aksoy 63



Examples: robot localization

Map continuously built over time
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Examples: panaromas

� Recognize overlap from an unordered set of 
images and automatically stitch together.

SIFT features provide initial feature matching.� SIFT features provide initial feature matching.

� Image blending at multiple scales hides the 
seams.
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Panorama of Lowe’s lab automatically assembled from 143 images



Examples: panaromas

Image registration and blending
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Examples: panaromas
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Sony Aibo

� SIFT usage:

� Recognize
chargingcharging
station

� Communicate
with visual
cards

� Teach object
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Teach object
recognition



Photo tourism: exploring photo collections

� Joint work by University of Washington and 
Microsoft Research

� http://phototour.cs.washington.edu/

� http://research.microsoft.com/IVM/PhotoTours/

� Photosynth Technology Preview at Microsoft Live 
Labs

� http://labs.live.com/photosynth/
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� Don’t forget to check the cool video and demo at 
http://phototour.cs.washington.edu/.



Photo tourism: exploring photo collections

� Detect features using SIFT.
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Photo tourism: exploring photo collections

� Detect features using SIFT.
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Photo tourism: exploring photo collections

� Detect features using SIFT.
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Photo tourism: exploring photo collections

� Match features between each pair of images.
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� Link up pairwise matches to form connected 
components of matches across several images.

Photo tourism: exploring photo collections
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Image 1 Image 2 Image 3 Image 4



Photo tourism: exploring photo collections
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Photo tourism: exploring photo collections
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Photos are automatically placed inside a sketchy 3D model of the scene;
an optional overhead map also shows each photo's location. 



Photo tourism: exploring photo collections
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An info pane on the left shows information about the current image and navigation 
buttons for moving around the collection; the filmstrip view on the bottom shows 
related images; mousing over these images brings them up as a registered overlay. 



Photo tourism: exploring photo collections

CS 484, Spring 2010 ©2010, Selim Aksoy 78

Photographs can also be taken in outdoor natural environments. The 
photos are correctly placed in 3-D, and more free-form geometric 
models can be used for inter-image transitions.



Photo tourism: exploring photo collections
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Annotations entered in one image (upper left) are automatically 
transferred to all other related images.



Scene summarization for online collections

� http://grail.cs.washington.edu/projects/canonview
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Scene summary browsing Enhanced 3D browsing


