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Importance of neighborhood

= Both zebras and dalmatians have black and white pixels in
similar numbers.

= The difference between the two is the characteristic
appearance of small group of pixels rather than individual
pixel values.

Adapted from Pinar Duygulu, Bilkent University
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Outline

= We will discuss neighborhood operations that
work with the values of the image pixels in the
neighborhood.

= Spatial domain filtering

= Frequency domain filtering
= Image enhancement

= Finding patterns
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Spatial domain filtering

31313 s What is the value of the
center pixel?

= What assumptions are you
making to infer the center
value?
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Spatial domain filtering

= Some neighborhood operations work with
» the values of the image pixels in the neighborhood, and

» the corresponding values of a subimage that has the
same dimensions as the neighborhood.

= The subimage is called a filter (or mask, kernel,
template, window).

= The values in a filter subimage are referred to as
coefficients, rather than pixels.
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Spatial domain filtering

= Operation: modify the pixels in an image based on
some function of the pixels in their neighborhood.

= Simplest: linear filtering (replace each pixel by a
linear combination of its neighbors).

= Linear spatial filtering is often referred to as
“convolving an image with a filter”.

CS 484, Spring 2011 ©2011, Selim Aksoy 6



Linear filtering

fim,n]=10g => him-k,n-1]g[k,I]
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Linear filtering

g [m,n] f [m,n]
> >

For a linear spatially invariant system

fimn]=10g => h[m-k,n-1]g[k,I]
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Linear filtering

= Filtering process:
= Masks operate on a neighborhood of pixels.
» The filter mask is centered on a pixel.

» The mask coefficients are multiplied by the pixel values
in its neighborhood and the products are summed.

k k
Gli,j1= > > Hlu,v]F[i+ u,j+ ]

u=—kov=-—k%k
= The result goes into the corresponding pixel position in
the output image.

= This process is repeated by moving the filter mask from
pixel to pixel in the image.
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Linear filtering

= This is called the cross-correlation operation and is

denoted by G=H®F
H[-1,-1]{H[-1,0]{H[-1,1]
Flrc]
Mask overlaid with H[0,-1]| H[O,0] | H[O,1]
image at [r,C]
H[1,-1]{ H[1,0] | H[1,1]
Input image Filter
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Output image
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Linear filtering

= Be careful about indices, image borders and
padding during implementation.

ZET0 wrap clamp mirror

Border padding examples.
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Smoothing spatial filters

= Often, an image is composed of

= Ssome under
detect and c

ying ideal structure, which we want to
escribe,

= together wit

N some random noise or artifact, which we

would like to remove.

= Smoothing fil

ters are used for blurring and for

noise reduction.

= Linear smoot
filters.
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Smoothing spatial filters

=l
=

Averaging (mean) filter Weighted average
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Smoothing spatial filters

10/11[10{ 0 | O |1 X | X X | X|X|X
9 [10]11] 1|01 x |10 X
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9ll10]11] 9 [99/11 F X || X
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1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) =
1/9.(90) = 10

Adapted from Octavia Camps, Penn State
CS 484, Spring 2011 ©2011, Selim Aksoy 14



Smoothing spatial filters

10|11 (10[ 0 | O | 1 X | X |X|X|X|X
9(1011] 1 | 0|1 X X
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1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x}+ 10x1 + 10x1) =
1/9.(180) = 20

Adapted from Octavia Camps, Penn State
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Smoothing spatial filters

= Common types of noise:

» Salt-and-pepper noise:
contains random
occurrences of black and
white pixels.

= Impulse noise: contains
random occurrences of
white pixels.

= (Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution.

Adapted from Linda Shapiro, U of Washington Impulse noise Gaussian noise
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Adapted from Linda Shapiro,
U of Washington

CS 484, Spring 2011

3x3

X7

Gaussian
noise

Salt and pepper
noise
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Smoothing spatial filters
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FIGURE 3.35 (a) Original image, of size 500 > 500 pixels (b)—(f) Results of smoothing
with square averaging filter masks of sizes n = 3,5,9,15, and 33, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35, 45, and 55 pixels, respectively; their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points: the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high: their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart: their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50 = 120 pixels.

Adapted from Gonzales and Woods
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Smoothing spatial filters

a b ¢

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(¢) Result of thresholding (b). (Original image courtesy of NASA.)

Adapted from Gonzales and Woods
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Smoothing spatial filters
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Adapted from Darrell and Freeman, MIT
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Smoothing spatial filters

S et g e TG (T, y) = v:-;p(_'I.Jr-y )

nnz.| .-

oot

A weighted average that
weighs pixels at its center
much more strongly than
its boundaries.

2D Gaussian filter

Adapted from Martial Hebert, CMU
CS 484, Spring 2011 ©2011, Selim Aksoy 21



Smoothing spatial filters

= If ois small: smoothing
will have little effect.

Effectof o

0.4

035 -

= If ois larger: neighboring
pixels will have larger oasl
weights resulting in
consensus of the
neighbors.

02 -
015 -
01 F

0.os -

= If ois very large: details :
will disappear along with
the noise.

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

Result of blurring
using a uniform
local model.

Result of
blurring using a

Gaussian filter.
Produces a set of

narrow horizontal
and vertical bars —
ringing effect.

Adapted from David Forsyth, UC Berkeley
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Smoothing spatial filters

Image
Noise
rL‘w |
| J
ideal Image  'Noise pracess Gaussian i.i.d. ( "white" ) noise:
flz,y) = [flzw) + nlz,y) n(z,y) ~ N(u, o)

Adapted from Martial Hebert, CMU
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Smoothing spatial filters




Order-statistic filters

= Order-statistic filters are nonlinear spatial filters
whose response is based on

» ordering (ranking) the pixels contained in the image
area encompassed by the filter, and then

= replacing the value of the center pixel with the value
determined by the ranking result.
= The best-known example is the median filter.

= It is particularly effective in the presence of
impulse or salt-and-pepper noise, with
considerably less blurring than linear smoothing
filters.
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Order-statistic filters
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Adapted from Octavia Camps, Penn State
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Order-statistic filters
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Adapted from Octavia Camps, Penn State
CS 484, Spring 2011 ©2011, Selim Aksoy 28



Salt-and-pepper noise

3x3

5x5

TXT

Adapted from Linda Shapiro,
U of Washington
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Gaussian Median

Mean

Gaussian noise

5x5

X7

Adapted from Linda Shapiro,

U of Washington

o
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Order-statistic filters

mrivisivie

L p

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3 averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente. Lixi. Inc.)

Adapted from Gonzales and Woods
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Order-statistic filters

Effect of median filter on salt and pepper noise
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Adapted from Martial Hebert, CMU
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Sharpening spatial filters

= Objective of sharpening is to highlight or enhance
fine detail in an image.

= Since smoothing (averaging) is analogous to
integration, sharpening can be accomplished by
spatial differentiation.

= First-order derivative of 1D function f(x)
f(x+1) — f(x).

= Second-order derivative of 1D function f(x)
f(x+1) — 2f(x) + f(x-1).
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Sharpening spatial filters
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Sharpening spatial filters
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Adapted from Gonzales and Woods
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Sharpening spatial filters

= Observations:
» First-order derivatives generally produce thicker edges
in an image.
= Second-order derivatives have a stronger response to
fine detail (such as thin lines or isolated points).

» First-order derivatives generally have a stronger
response to a gray level step.

= Second-order derivatives produce a double response at
step changes in gray level.

CS 484, Spring 2011 ©2011, Selim Aksoy 36



Sharpening spatial filters

e Laplacian of a function (image) f(x,y) of two variables

r and y

CS 484, Spring 2011

Vf =

P 0

I
ox?  Oy?
IS a second-order derivative operator.

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 ~1 -1 -1
-1 4 -1 -1 8 -1
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FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian.
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Sharpening spatial filters

ab

cd

FIGURE 3.40

(a) Image of the
North Pole of the
moon.

(b) Laplacian-
filtered image.
(c) Laplacian
image scaled for
display purposes.
{(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)

Adapted from Gonzales and Woods
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Sharpening spatial filters

e For a function f(x,y), the gradient at (x,y) is defined

daS

o |

of of 1"
dr Oy

where its magnitude can be used to implement first-
order derivatives.

-1 0

0

0 1

0 1

0 2

1 2 1

0 1
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Robert’s cross-gradient operators

Sobel gradient operators
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Sharpening spatial filters
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Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters
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Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters

before after

Adapted from Darrell and Freeman, MIT
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Combining spatial enhancement methods

ab
c d

FIGURE 3.46
{a) Image of

(b). (d) Sobel of
(a).
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FIGURE 3.46

‘Continited )
bel image
hed with a
averaging

.
sharpened
btained
by the sum of (a)
and (). (h) Final
result obtained by

transformation to
(). Compare (g)
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