Linear Filtering – Part I

Selim Aksoy
Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr
Importance of neighborhood

- Both zebras and dalmatians have black and white pixels in similar numbers.
- The difference between the two is the characteristic appearance of small group of pixels rather than individual pixel values.

Adapted from Pinar Duygulu, Bilkent University
We will discuss neighborhood operations that work with the values of the image pixels in the neighborhood.

- Spatial domain filtering
- Frequency domain filtering
- Image enhancement
- Finding patterns
Spatial domain filtering

- What is the value of the center pixel?

- What assumptions are you making to infer the center value?
Spatial domain filtering

- Some neighborhood operations work with
 - the values of the image pixels in the neighborhood, and
 - the corresponding values of a subimage that has the same dimensions as the neighborhood.
- The subimage is called a filter (or mask, kernel, template, window).
- The values in a filter subimage are referred to as coefficients, rather than pixels.
Spatial domain filtering

- Operation: modify the pixels in an image based on some function of the pixels in their neighborhood.
- Simplest: linear filtering (replace each pixel by a linear combination of its neighbors).
- Linear spatial filtering is often referred to as “convolving an image with a filter”.
Linear filtering

\[f[m, n] = I \otimes g = \sum_{k,l} h[m - k, n - l]g[k, l] \]

Linear system:

Input:

\[g[m] \]

Output?

\[h[m] \]

\[f[m=0] = \sum_{k} h[-k]g[k] \]

\[f[m=1] = \sum_{k} h[1-k]g[k] \]

\[f[m=2] = \sum_{k} h[2-k]g[k] \]
For a linear spatially invariant system

\[f[m, n] = I \otimes g = \sum_{k,l} h[m-k, n-l]g[k,l] \]

\[
\begin{array}{cccc}
111 & 115 & 113 & 111 \\
135 & 138 & 137 & 139 \\
163 & 168 & 188 & 196 & 206 & 202 & 206 & 207 \\
180 & 184 & 206 & 219 & 202 & 200 & 195 & 193 \\
189 & 193 & 214 & 216 & 104 & 79 & 83 & 77 \\
191 & 201 & 217 & 220 & 103 & 59 & 60 & 68 \\
195 & 205 & 216 & 222 & 113 & 68 & 69 & 83 \\
199 & 203 & 223 & 228 & 108 & 68 & 71 & 77 \\
\end{array}
\]

\[
\begin{array}{cccc}
-1 & 2 & -1 \\
-1 & 2 & -1 \\
\end{array}
\]

\[
\begin{array}{cccc}
? & -5 & 9 & -9 & 21 & -12 & 10 & ? \\
? & -29 & 18 & 24 & 4 & -7 & 5 & ? \\
? & -50 & 40 & 142 & -88 & -34 & 10 & ? \\
? & -41 & 41 & 264 & -175 & -71 & 0 & ? \\
? & -23 & 33 & 360 & -217 & -134 & -23 & ? \\
\end{array}
\]
Linear filtering

Filtering process:

- Masks operate on a neighborhood of pixels.
- The filter mask is centered on a pixel.
- The mask coefficients are multiplied by the pixel values in its neighborhood and the products are summed.

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

- The result goes into the corresponding pixel position in the output image.
- This process is repeated by moving the filter mask from pixel to pixel in the image.
This is called the **cross-correlation** operation and is denoted by

\[G = H \otimes F \]

- **Input image**
- **Filter**
- **Output image**
Be careful about indices, image borders and padding during implementation.

Border padding examples.
Smoothing spatial filters

- Often, an image is composed of
 - some underlying ideal structure, which we want to detect and describe,
 - together with some random noise or artifact, which we would like to remove.
- Smoothing filters are used for blurring and for noise reduction.
- Linear smoothing filters are also called averaging filters.
Smoothing spatial filters

Averaging (mean) filter

\[
\frac{1}{9} \times \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

Weighted average

\[
\frac{1}{16} \times \begin{pmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{pmatrix}
\]
Smoothing spatial filters

\[
\frac{1}{9}(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = \frac{1}{9}(90) = 10
\]

Adapted from Octavia Camps, Penn State
Smoothing spatial filters

10 11 10 0 0 1
9 10 11 1 0 1
10 9 10 0 2 1
11 10 9 10 9 11
9 10 11 9 99 11
10 9 9 11 10 10

I

10 11 10 0 0 1
9 10 11 1 0 1
10 9 10 0 2 1
11 10 9 10 9 11
9 10 11 9 99 11
10 9 9 11 10 10

1/9

1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = 1/9.(180) = 20

Adapted from Octavia Camps, Penn State
Smoothing spatial filters

- **Common types of noise:**
 - **Salt-and-pepper noise:** contains random occurrences of black and white pixels.
 - **Impulse noise:** contains random occurrences of white pixels.
 - **Gaussian noise:** variations in intensity drawn from a Gaussian normal distribution.

Adapted from Linda Shapiro, U of Washington
Gaussian noise
Salt and pepper noise

3x3

5x5

7x7

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2012
Smoothing spatial filters

FIGURE 3.35 (a) Original image, of size 500 × 500 pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes n = 3, 5, 9, 15, and 35, respectively. The black squares at the top are of sizes 3, 5, 9, 15, 25, 35, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50 × 120 pixels.

Adapted from Gonzales and Woods
Smoothing spatial filters

\begin{figure}[h]
\begin{center}
\begin{tabular}{ccc}
\includegraphics[width=0.3\textwidth]{a.png} & \includegraphics[width=0.3\textwidth]{b.png} & \includegraphics[width=0.3\textwidth]{c.png}
\end{tabular}
\end{center}
\caption{(a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)}
\end{figure}
Smoothing spatial filters

![Graphs showing impulse response and edge response with original, coefficient, and filtered plots.]

Adapted from Darrell and Freeman, MIT
Smoothing spatial filters

A weighted average that weighs pixels at its center much more strongly than its boundaries.

2D Gaussian filter

$$G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Adapted from Martial Hebert, CMU
Smoothing spatial filters

- If σ is small: smoothing will have little effect.

- If σ is larger: neighboring pixels will have larger weights resulting in consensus of the neighbors.

- If σ is very large: details will disappear along with the noise.

Adapted from Martial Hebert, CMU
Smoothing spatial filters

Result of blurring using a uniform local model.

Produces a set of narrow horizontal and vertical bars – ringing effect.

Result of blurring using a Gaussian filter.

Adapted from David Forsyth, UC Berkeley
Smoothing spatial filters

\[
\begin{align*}
\text{Ideal Image} & \quad \text{Noise process} \\
\hat{f}(x,y) & = \bar{f}(x,y) + \bar{\eta}(x,y)
\end{align*}
\]

Gaussian i.i.d. (“white”) noise:

\[
\eta(x,y) \sim \mathcal{N}(\mu, \sigma)
\]
Smoothing spatial filters

Adapted from Martial Hebert, CMU
Order-statistic filters

- Order-statistic filters are nonlinear spatial filters whose response is based on
 - ordering (ranking) the pixels contained in the image area encompassed by the filter, and then
 - replacing the value of the center pixel with the value determined by the ranking result.
- The best-known example is the median filter.
- It is particularly effective in the presence of impulse or salt-and-pepper noise, with considerably less blurring than linear smoothing filters.
Order-statistic filters

<table>
<thead>
<tr>
<th>I</th>
<th>10</th>
<th>11</th>
<th>10</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>99</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sort

10,11,10,9,10,11,10,9,10

9,9,10,10,10,10,10,10,11,11

median

Adapted from Octavia Camps, Penn State
Order-statistic filters

<table>
<thead>
<tr>
<th>I</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 11 10 0 0 1</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>9 10 11 1 0 1</td>
<td>X</td>
</tr>
<tr>
<td>10 9 10 0 2 1</td>
<td>X</td>
</tr>
<tr>
<td>11 10 9 10 9 11</td>
<td>X</td>
</tr>
<tr>
<td>9 10 11 9 99 11</td>
<td>X</td>
</tr>
<tr>
<td>10 9 9 11 10 10</td>
<td>X X X X X X X X</td>
</tr>
</tbody>
</table>

Sort

10, 9, 11, 9, 99, 11, 11, 10, 10

9, 9, 10, 10, 10, 11, 11, 11, 99

Median

Adapted from Octavia Camps, Penn State
Salt-and-pepper noise

3x3

5x5

7x7

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2012
Gaussian noise

3x3

5x5

7x7

Adapted from Linda Shapiro, U of Washington
Order-statistic filters

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
Order-statistic filters

Effect of median filter on salt and pepper noise

Adapted from Martial Hebert, CMU
Sharpening spatial filters

- Objective of sharpening is to highlight or enhance fine detail in an image.
- Since smoothing (averaging) is analogous to integration, sharpening can be accomplished by spatial differentiation.
- First-order derivative of 1D function $f(x)$
 \[f(x+1) - f(x). \]
- Second-order derivative of 1D function $f(x)$
 \[f(x+1) - 2f(x) + f(x-1). \]
Sharpening spatial filters

FIGURE 3.36
Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid.
Sharpening spatial filters

Figure 3.38
(a) A simple image. (b) 1-D horizontal gray-level profile along the center of the image and including the isolated noise point. (c) Simplified profile (the points are joined by dashed lines to simplify interpretation).
Sharpening spatial filters

- Observations:
 - First-order derivatives generally produce thicker edges in an image.
 - Second-order derivatives have a stronger response to fine detail (such as thin lines or isolated points).
 - First-order derivatives generally have a stronger response to a gray level step.
 - Second-order derivatives produce a double response at step changes in gray level.
Sharpening spatial filters

- **Laplacian** of a function (image) $f(x, y)$ of two variables x and y

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

is a second-order derivative operator.

\begin{figure}[h]
\begin{center}
\begin{tabular}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0 \\
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0 \\
\end{tabular}
\end{center}
\end{figure}

\begin{figure}[h]
\begin{center}
\begin{tabular}{ccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1 \\
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{tabular}
\end{center}
\end{figure}

FIGURE 3.39
(a) Filter mask used to implement the digital Laplacian, as defined in Eq. (3.7-4).
(b) Mask used to implement an extension of this equation that includes the diagonal neighbors. (c) and (d) Two other implementations of the Laplacian.
Sharpening spatial filters

FIGURE 3.40
(a) Image of the North Pole of the moon.
(b) Laplacian-filtered image.
(c) Laplacian image scaled for display purposes.
(d) Image enhanced by using Eq. (3.7-5).
(Original image courtesy of NASA.)
Sharpening spatial filters

- For a function $f(x, y)$, the gradient at (x, y) is defined as

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}^T$$

where its magnitude can be used to implement first-order derivatives.

<table>
<thead>
<tr>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Robert’s cross-gradient operators

<table>
<thead>
<tr>
<th>-1</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Sobel gradient operators

<table>
<thead>
<tr>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Sharpening spatial filters

High-boost filtering

Adapted from Darrell and Freeman, MIT
Sharpening spatial filters

before

after

Adapted from Darrell and Freeman, MIT
Combining spatial enhancement methods

Figure 3.46 (Continued)
(e) Sobel image smoothed with a 5×5 averaging filter. (f) Mask image formed by the product of (c) and (e).
(g) Sharpened image obtained by the sum of (a) and (f). (h) Final result obtained by applying a power-law transformation to (g). Compare (g) and (h) with (a).

(a) Image of whole body bone scan.
(b) Laplacian of (a).
(c) Sharpened image obtained by adding (a) and (b).
(d) Sobel of (a).