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Fourier theory

= Jean Baptiste Joseph Fourier had a crazy idea:
Any periodic function can be written as a weighted
sum of sines and cosines of different frequencies
(1807).

- Fourier series
= Even functions that are not periodic (but whose
area under the curve is finite) can be expressed
as the integral of sines and cosines multiplied by a
weighing function.
- Fourier transform
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Fourier theory

= [he Fourier theory
shows how most real
functions can be
represented in terms
of a basis of sinusoids.

= The building block:
s Asin( wx + @)

= Add enough of them
to get any signal you
want.

f(target)=

f1 + f2+ f3...+ fn+...

Adapted from Alexei Efros, CMU
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Fourier transform

e The Fourier transform, F(u), of a single variable,
continuous function, f(x), is defined by

(u) / f(x) e 2™ dy.

e Given F'(u), we can obtain f(x) using the inverse
Fourier transform

o
T) = F(u) 7™ du.
f(x) ()
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Fourier transform

e The discrete Fourier transform (DFT), F(u), of a discrete function
of one variable, f(z), x =0,1,2,..., M — 1, is defined by

\[ Z f —joul/’\[

r=0

' 'U-

for a =0,1,2,..., M —1.

e Given F'(u), we can obtain the original function back using the

inverse DF T
M—1

§ f‘ €J2Trur/”tf

u=0
forz =0, 12500 M — L
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Fourier transform

e [hese formulas can be extended for functions of two
variables.

e Fourier transform:

F(uj@) :/ / f(’l"q’lj) e—jQW('IL.J?+'t.?'3/) dT dy
—00 J —00

e Inverse Fourier transform:

(2, y) / / (u, v) /> dy d.
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Fourier transform

e Discrete Fourier transform:

M—1N-1
—-2.«1 (wx/M4vy/N)
F(u,v) = J\[N> > flx,y) e [MAvy/N)
xr=0 y=0
foru=20,1,2,..., M—-1,v=0,1,2,...,N — 1.
e Inverse discrete Fourier transform:
M—1N-1
T ,y T Y F ’ZL €j27?(-u;z:/ﬂf%—-vy/N)
u=0 wv=0
forxe =0,1,2,... M—-1,y=0,1,2,...,N — 1.
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Fourier transform

e F'(u,v) can also be expressed in polar coordinates as
F(u,0) = |[F(u,v)] /0
where
: - s 1/2
£ (w, v)| = (‘SRz{F(Uw w)} + %2{17(15. U)})

is called the magnitude or spectrum of the Fourier transform, and

B N e el %{F(u.’b’)}
(;)(U-s U) = tan (;’R{f’w(’ua FU)_}

is called the phase angle or phase spectrum.

e R{F(u,v)} and S{F'(u,v)} are the real and imaginary parts of
F'(u,v), respectively.
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Fourier transform

e [he spectrum need not be interpreted as an image, but rather as a
2D display of the power in the original image versus the frequency
components u and wv.

e The value F'(0,0) is the average of f(x,vy).

e Fourier transform is conjugate symmetric (F'(u,v) = F*(—u, —v))
and its spectrum is symmetric about the origin (|F(u,v)| =
F(—u,—v)|) (when f(x,y) is real).
e Usually the input image function is multiplied by (—1)*¥ prior to
computing the Fourier transform so that
31f(x.y) (—1)"] = F(u— M/2,0 — N/2).
The origin of the Fourier transform is located at v = M /2 and
v=DN/2.
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Fourier transform

To get some sense of what basis
elements look like, we plot a basis
element --- or rather, its real part ---

as a function of x,y for some fixed u, v.
We get a function that is constant when
(ux+vy) is constant. The magnitude of
the vector (u, v) gives a frequency, and
its direction gives an orientation. The
function is a sinusoid with this frequency
along the direction, and constant
perpendicular to the direction.

\Y

e—n’(ux+vy)

° u

ert(ux+vy)

Adapted from Antonio Torralba
CS 484, Spring 2012 ©2012, Selim Aksoy 10



Fourier transform

Here u and v are /
larger than in the
previous slide.
e—n'Yux+vy)
) u
"o’ (1x+vy) J

Adapted from Antonio Torralba
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Fourier transform

Spatial domain Frequency domain
f(z) F(s) = / f(z)e 2T 4y

$box(x) b sinc(s)

X N 1 L N

i gauss(x; o) » gauss(s; 1/o)

T

_____J,f"“‘m_h _‘__K __x"; "-.R =5

' sinc(s) $box(x)

Adapted from Alexei Efros, CMU
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Fourier transform
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FIGURE 4.2 (a) A
discrete function
of M points, and
(b) 1ts Fourier
spectrum. (¢) A
discrete function
with twice the
number of
nonzero points,

and (d) its Fourier

spectrum.

Adapted from Gonzales and Woods
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FIGURE 4.3

(a) Image of a
20 % 40 white
rectangle on a
black background
of size 512 X 512
pixels

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with
Fip. 4.2
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Fourier transform

Adapted from Gonzales and Woods
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Fourier transform

e The power spectrum is defined as the square of the
Fourier spectrum:

P(u,v) = |F(u,v)|’
= R F(u,v)} + S*H{F(u,v)}.

e The radial distribution of values in the Fourier spectrum
of an image Is sensitive to texture coarseness in that
Image.

» A coarse texture will have high values concentrated
near the origin of the spectrum.
» A fine texture will cause the values to be spread out.
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Fourier transform

e The angular distribution of values in the spectrum is
sensitive to the directionality of the texture in the image.
» A texture with many edges in a given direction ¢
will have high values of the spectrum concentrated
around the perpendicular direction 6 + 7 /2.
» For a non-directional texture, the spectrum is also
non-directional.

e We will come back to this when we talk about texture.

CS 484, Spring 2012 ©2012, Selim Aksoy 17



Fourier transform

How to interpret a Fourier spectrum:

Vertical orientation Low spatial frequencies

—» | Horizontal
- = | orientation

High
_ _ spatial
fx in cycles/image frequencies

Log power spectrum

Adapted from Antonio Torralba
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Fourier transform
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Fourier transform

Figure 5.42: Four images (above) and their power spectrums (below). The power spectrum
of the brick texture shows energy in many sinusoids of many frequencies, but the dominant
direction is perpendicular to the 6 dark seams running about 45 degrees with the X-axis.
There 1s noticable energy at 0 degrees with the X axis, due to the several short vertical
secams. The power speetrum of the building shows high frequency energy in waves along
the X-direction and the Y-direction. The third image i1s an aerial image of an orchard:
the power spectrum shows the rows and columns of the orchard and also the “diagnonal
rows” . The far right image, taken from a phone book, shows high frequency power at about
607 with the X-axis, which represents the texture in the lines of text. Energy is spread
motre broadly in the perpendicular direction also in order to model the characters and their

spacing. Adapted from Shapiro and Stockman
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Fourier transform

Example building patterns
in a satellite image and
their Fourier spectrum.
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Convolution theorem

e The discrete convolution of two functions f(x,y) and
h(x,y) of size M x N is defined as
M-1N-1

f(x,y)xh(x,vy) ]\[N Ty‘f (m,n) h(x—m.,y—n).

m=0 n=0
e This is equivalent to the correlation of f(x,y) with
h(x,y) flipped about the origin.

e Convolution theorem:
f(x,y) = h(r,y) = Fu,v) H(u,v)
flx,y) h(z,y) < F(u,v)* H(u,v)

where “<" indicates a Fourier transform pair.
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Frequency domain filtering

Filter image f(z, y) with mask h{z.y)

(1) Fourier transform the image f(r.y) to obtain its frequency rep. Flu,v).
(2) Fourier transform the mask h{x, y) to obtain its frequency rep. H(u,v)
(3) multiply F(u,v) and H(u, v) pointwise to obtain F'(u,v)

(4) apply the inverse Fourier transform to F'(u, v) to obtain the filtered image f'(x, y).

Algorithm 3: Filtering image f(x,y) with mask h(z,y) using the Fourier transform

Frequency domain filtering operation

Fourier Filter [nverse
! g function g Fourier
transform
Hu,v) transform l
Flu, v) H(u, v)F(u,v)

Pre- Post-
processing processing
flx.y) g(x. y)

[nput Enhanced
image image
FIGURE 4.5 Basic steps for filtering in the frequency domain. Adapted from Shapiro and Stockman,

and Gonzales and Woods
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Frequency domain filtering

i) ab
c d

(1) H{

b 4
FIGURE 4.9
(a) Gaussian
frequency domain
lowpass filter.
(b) Gaussian
frequency domain
highpass filter.
(c) Corresponding
lowpass spatial

- i

filter.

H

Ll

(d) Corresponding
highpass spatial
filter. The masks
h(x) h(x) shown are used in
i i Chapter 3 for
lowpass and

| I highpass filtering.

201 =10

Since the discrete Fourier transform is periodic, padding is
needed in the implementation to avoid aliasing (see section
4.6 in the Gonzales-Woods book for implementation details).
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Frequency domain filtering

a(x,y)

CS 484, Spring 2012 2012, Selim Akso _ 25
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Smoothing frequency domain filters

H(u,v)

H{u,v)
3

1

= D(u,v)

ablc

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.
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a b HGURE 4.12 (a) Original image. (b)—(l) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ [ power removed by these filters was 8,54, 3.6, 2, and 0.5% of the total, respectively.
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Smoothing frequency domain filters

= The blurring and ringing caused by the ideal low-
pass filter can be explained using the convolution
theorem where the spatial representation of a
filter is given below.

ab

FIGURE 4.43

(a) Representation
in the spatial
domain of an
ILPF of radius 5
and size

1000 X< 1000.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.
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Smoothing frequency domain filters

Hu, v)

0.667

Diu,v)

a2 bhlic

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,.
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FIGURE 4.18 {a) Original image. (b)—([) Resulls of filtering with Gaussian lowpass
filters with cutofl frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in
Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.
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Sharpening frequency domain

filters
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FIGURE 4.22 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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Sharpening frequency domain filters
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11(a) with Dy = 15, 30, and 80,
respectively. Problems with ringing are quite evident in (a) and (b).

Adapted from Gonzales and Woods
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Sharpening frequency domain filters

S e

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with D, = 15,
30, and 80, respectively. Compare with Figs. 4.24 and 4.25,

Adapted from Gonzales and Woods
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Template matching

= Correlation can also be used for matching.

= If we want to determine whether an image f
contains a particular object, we let h be that
object (also called a template) and compute the
correlation between f and h.

= If there is a match, the correlation will be
maximum at the location where h finds a
correspondence in f.

= Preprocessing such as scaling and alignment is
necessary in most practical applications.
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Template matching

ahb

cod

e [

FIGURE 4.41

(a) Image.

(b} Template.

() and

() Padded
images.

(&) Correlation
function displayed
as an image.

() Horizon tal
profile ling
through the
highest value in
(). showing the
point at which the
best match took
place.

Highest correlation
value

Gray-level
profile line

Adapted from Gonzales and Woods
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Template matching

ke bt

Face detection using template matching: face templates.

CS 484, Spring 2012 ©2012, Selim Aksoy
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Template matching

Face detection using template matching: detected faces.
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Resizing images

How can we generate a
nalf-sized version of a
arge image?

Pl Adapted from Steve Seitz, U of Washington
©2012, Selim Aksoy 36



Resizing images

5 g b
Throw away every other row and column to create
a 1/2 size image (also called sub-sampling).

Adapted from Steve Seitz, U of Washington
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Resizing images

' -
" Tl

1/2 1/4 (2x zoom)
Does this look nice?

Adapted from Steve Seitz, U of Washington
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Resizing images

= We cannot shrink an image by simply taking every k'th pixel.
= Solution: smooth the image, then sub-sample.

e Gaussian 1/8
Gaussian 1/4

. T

-l,\_..',

Ga USSia n 1 / 2 Adapted from Steve Seitz, U of Washington
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Resizing images

l-l.\_.i .

Gaussian 1/2 Gaussian 1/4 Gaussian 1/8
(2x zoom) (4x zoom)

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

Examples of GOOD sampling Examples of BAD sampling -> Aliasing

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

= Errors appear if we do not sample properly.

= Common phenomenon:

» High spatial frequency components of the image appear
as low spatial frequency components.

= Examples:
= Wagon wheels rolling the wrong way in movies.
= Checkerboards misrepresented in ray tracing.
s Striped shirts look funny on color television.
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Gaussian pyramids

L1 I Level 0 { apex) i s
Ix2 , Level 1
N FIGURE 7.2 (a) A
44 Level 2 pvramidal image
p ! structure and
p N Wt . (b) system block
N3 N2 diagram for

Level J — 1

p creating it.

™,

N XN, Level J (base)

Downsampler

Approximation Level f — 1
filter 2+ T AP ProKima tion
2
t Upsampler
Interpolation
filter
Prediction
. Level j
 Levelf Py prediction
inpul image residual

Adapted from Gonzales and Woods
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Gaussian pyramids

Low resolution m 04 = (G, " gaussian) 2

\ 1t down-sam ]

Gy = (G, * Saussian) v

High resolution

[rani & Basn

Adapted from Michael Black, Brown University
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Gaussian pyramids

, search B
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|

Irani1 & Basri

Adapted from Michael Black, Brown University
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