Introduction

Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr

What is computer vision?

"What does it mean, to see? The plain man's answer (and Aristotle's, too) would be, to know what is where by looking."

-- David Marr, Vision (1982)

Automatic understanding of images and video

- Computing properties of the 3D world from visual data (measurement).
- Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (perception and interpretation).

Adapted from Trevor Darrell, UC Berkeley, Alyosha Efros, Carnegie Mellon

Why study computer vision?

- As image sources multiply, so do applications
 - Relieve humans of boring, easy tasks
 - Enhance human abilities: human-computer interaction, visualization
 - Perception for robotics / autonomous agents
 - Organize and give access to visual content
- Goals of vision research:
 - Give machines the ability to understand scenes.
 - Aid understanding and modeling of human vision.
 - Automate visual operations.

Why study computer vision?

Personal photo albums

Movies, news, sports

Surveillance and security CS 484, Spring 2012

Medical and scientific images ©2012, Selim Aksoy

Related disciplines

Applications

- Medical image analysis
- Security
 - Biometrics
 - Surveillance
 - Tracking
 - Target recognition
- Remote sensing
- Robotics

- Industrial inspection, quality control
- Document analysis
- Multimedia
- Assisted living
- Human-computer interfaces

CS 484, Spring 2012

http://www.clarontech.com

3D imaging: MRI, CT

Image guided surgery Grimson et al., MIT

Adapted from CSE 455, U of Washington

Cancer detection and grading

CS 484, Spring 2012

Slice of lung

Adapted from Linda Shapiro, U of Washington

"Your x-ray showed a broken rib, but we fixed it with Photoshop."

Biometrics

Adapted from Anil Jain, Michigan State

University of Central Florida, Computer Vision Lab

CS 484, Spring 2012

Adapted from Octavia Camps, Penn State

Adapted from Martial Hebert, CMU

Generating traffic patterns

University of Central Florida, Computer Vision Lab

Tracking in UAV videos

Adapted from Martial Hebert, CMU, and Masaharu Kobashi, U of Washington

CS 484, Spring 2012

Smart cars

Adapted from CSE 455, U of Washington

Vehicle and pedestrian protection

Lane departure warning, collision warning, traffic sign recognition, pedestrian recognition, blind spot warning

CS 484, Spring 2012

©2012, Selim Aksoy

http://www.mobileye-vision.com

Forest fire monitoring system

Early warning of forest fires

Adapted from Enis Cetin, Bilkent University

CS 484, Spring 2012

Robotics

Adapted from CSE 455, U of Washington

Robotics

Adapted from Steven Seitz, U of Washington

Autonomous navigation

http://www.darpa.mil/grandchallenge/index.asp http://en.wikipedia.org/wiki/DARPA_Grand_Challenge

Autonomous navigation

Michigan State University

General Dynamics Robotics Systems http://www.gdrs.com

Face detection and recognition

Adapted from CSE 455, U of Washington 27

CS 484, Spring 2012

Industrial automation

Automatic fruit sorting

Color Vision Systems http://www.cvs.com.au

Industrial automation

Industrial robotics; bin picking

http://www.braintech.com

Postal service automation

General Dynamics Robotics Systems http://www.gdrs.com

Optical character recognition

Digit recognition, AT&T labs http://www.research.att.com/~yann

License place recognition

Adapted from Steven Seitz, U of Washington

Document analysis

I looked as hard as I could see, beyond 100 plus infinity an object of bright intensity - it was the back of me!

Figure 1.5: (Left) Chinese characters and (right) English equivalent. Is it possible that a machine could automatically translate one into the other? Chinese characters and poem courtesy of John Weng.

Adapted from Shapiro and Stockman

Document analysis

CMS/Fisher HealthCare

Blood Bank/Dylmbans

Model 145 Isotemp* Dry Bath Incubator

Holds 1 to 4 heating blocks with choice of 11 well sizes ins every asronie in within til 1? C of lempers:

Ambigot to 1257 (\$1957) - (with -0.1715) approved that to mograture rea ol a reducted from 25% to 1958 Inadheria since o limensions: 91 x 15 V/ x 4° H (23 x 28 x 10 cm). With line care and d un Healing blocks sold separate

Each

ALK BA

995 25

Rectrical Requirem Crit Mo 1980/199181-18, 991900/256/approved 2419/150/80-12, 6009/ 11-716-100 11-715-1019

Average deviation Long mean of 3<mark>71 D.</mark> Recompliance Market

Incu-Block* Partial Immersion Thermometers

For all standard heat no blocks and water baths. Ortical temperatures (251, 001, 371, 581 C) are marked with arrows. Available with shatten creat, contamination grad Teller' coating. Total length: 176 mm. Immersion: 35 mm

	26-57	0.5	Ne	14-992.	45.2			
	25.57	D.51	Mer	14-993	45.1			
More Thermonieters								
	For more thermometers, including digital types							
		5	ee nage 952					
				-				

Model 147 Isotemp" Dry Balh

 Holds single heating block with choice of 11 well sizes Similar in Model 125, on tarin 365' (bick 22.0 mm) mater ideal for labe end HAND C (2D 47 EP 10) The part adjust english carefully hole in troat of UTH R Supplies with strong ryling case, thermostatically second beater anal idicator and line core and blild, and instructions. Dimensions: Bit o $R \gtrsim W \propto \mathcal{X} + 1115 \times 17 \times 8$ mmt CSA argumed H refely /see held v Cat. No. Rectrical Ben (remove 120V 50/90 Hz, 120A 11-715-102 223.58

Interchangeable Heating Blocks for Isotemp*. Dry Baths

he Bize, mm	WeitsFinek	Carl Ma.	Each
6	35	11-715-105	71 - 9
10	93	11-716-107	71.15
35	20 (sht itter	11-715-120	71 19
12	12	11-715-109	71.18
po ka	12	11-716-121	71.15
13	12	11-715-111	71 · S
15	12	11-715-113	71.18
16	N	11-715-123	71.9
18	12	11-715-115	71 · 9
20	6	11-716-117	71.15
27	5	11-715-119	71.15

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2012

Sports video analysis

Tennis review system

http://www.hawkeyeinnovations.co.uk

SPEED 144 KPH

CS 484, Spring 2012

©2012, Selim Aksoy

SHARAPOVA FOREHAND WINNER

Scene classification

Object recognition

36
Object recognition

Lincoln, Microsoft Research

Yeh et al., MIT

kooaba

Google Goggles Bing Vision

€ 8 m @ 2-53 PM

G

Land cover classification

Land cover classification

Object recognition

CS 484, Spring 2012

Object recognition

Recognition of buildings and building groups

Organizing image archives

					1 des	22				
		No.			an and					
	and a second						MARK			
		MB Same Ages	Baseline Telephone - Constant						-	
P		AND A	***							
		XXX				R		X		
Part of the second seco		The form of the form						-		
Adapte	d from Pi	nar Duyg	ulu, Bilke	ent Unive	rsity		A	E		J.

CS 484, Spring 2012

Photo tourism: exploring photo collections

Building 3D scene models from individual photos

Adapted from Steven Seitz, U of Washington

CS 484, Spring 2012

Photosynth

Content-based retrieval

http://www.like.com

3D scanning and reconstruction

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2012

Earth viewers (3D modeling)

Motion capture

Adapted from Linda Shapiro, U of Washington

CS 484, Spring 2012

Visual effects

Adapted from CSE 455, U of Washington

Motion capture

Adapted from CSE 455, U of Washington

Mozaic

Adapted from David Forsyth, UC Berkeley

Mozaic

Adapted from David Forsyth, UC Berkeley

Critical issues

- What information should be extracted?
- How can it be extracted?
- How should it be represented?
- How can it be used to aid analysis and understanding?

Subjective contours

CS 484, Spring 2012

Adapted from Alyosha Efros, Carnegie Mellon

Occlusion

* types of "junctions" give cues about surfaces, occlusion, and light.

I. Rock, The Logic of Perception, 1983.

Adapted from Michael Black, Brown University

What the computer gets

Challenges 1: view point variation

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

Challenges 2: illumination

Adapted from Fei-Fei Li

Challenges 3: occlusion

Magritte, 1957

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

CS 484, Spring 2012

Challenges 4: scale

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

CS 484, Spring 2012

Challenges 5: deformation

Xu, Beihong 1943

CS 484, Spring 2012

©2012, Selim Aksoy

Adapted from L. Fei-Fei, R. Fergus, A. Torralba 65

Challenges 6: background clutter

Adapted from Fei-Fei Li

Challenges 7: intra-class variation

CS 484, Spring 2012

©2012, Selim Aksoy

Adapted from L. Fei-Fei, R. Fergus, A. Torralba 67

Recognition

- How can different cues such as color, texture, shape, motion, etc., can be used for recognition?
 - Which parts of image should be recognized together?
 - How can objects be recognized without focusing on detail?
 - How can objects with many free parameters be recognized?
 - How do we structure very large model bases?

Color

Adapted from Martial Hebert, CMU

Texture

Adapted from David Forsyth, UC Berkeley

Color, texture, and proximity

Adapted from Fei-Fei Li

Segmentation

Adapted from Linda Shapiro, U of Washington
Segmentation

Adapted from Jianbo Shi, U Penn

Shape

Recognized objects

Adapted from Enis Cetin, Bilkent University

CS 484, Spring 2012

Model database

©2012, Selim Aksoy

Motion

Detection

Adapted from David Forsyth, UC Berkeley

Detection

Adapted from David Forsyth, UC Berkeley

Detection

What are our "models"? How good are they?

Recognition

Recognition

Adapted from David Forsyth, UC Berkeley

Parts and relations

Patch Model

http://www.research.ibm.com/ecvg/biom/facereco.html

Parts and relations

How flexible are the spatial relations of the parts?

Adapted from Antonio Torralba, MIT

Adapted from Antonio Torralba, MIT

Adapted from Derek Hoiem, CMU

CS 484, Spring 2012

Adapted from Derek Hoiem, CMU

Stages of computer vision

- Low-level
 - image \rightarrow image
- Mid-level

 image → features / attributes
 Image analysis / image understanding

 High-level

 features → "making sense", recognition

Low-level

sharpening

blurring

Adapted from Linda Shapiro, U of Washington

©2012, Selim Aksoy

Low-level

©2012, Selim Aksoy

Mid-level

Adapted from Linda Shapiro, U of Washington

Low-level to high-level

Adapted from Linda Shapiro, U of Washington