Overview

- Statistical pattern recognition
 - Bayesian Decision Theory
 - Parametric models
 - Non-parametric models
 - Non-Bayesian classifiers
 - Distance-based classifiers
 - Decision boundary-based classifiers
 - Feature reduction and selection
 - Unsupervised learning and clustering
 - Algorithm-independent learning issues
 - Estimating and comparing classifiers
 - Combining classifiers
- Structural and syntactic pattern recognition
Bayesian Decision Theory

- Bayesian Decision Theory is a statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.

- Fish sorting example: define w, the type of fish we observe (state of nature), as a random variable where
 - $w = w_1$ for sea bass,
 - $w = w_2$ for salmon.

 - $P(w_1)$ is the \textit{a priori probability} that the next fish is a sea bass.
 - $P(w_2)$ is the a priori probability that the next fish is a salmon.
Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$P(w_1) + P(w_2) = 1$$

(exclusivity and exhaustivity).
Making a Decision

- How can we make a decision with only the prior information?

Decide

\[
\begin{cases}
 w_1 & \text{if } P(w_1) > P(w_2) \\
 w_2 & \text{otherwise}
\end{cases}
\]

- What is the probability of error for this decision?

\[
P(error) = \min\{P(w_1), P(w_2)\}
\]
Let’s try to improve the decision using the lightness measurement x.

Let x be a continuous random variable.

Define $p(x|w_j)$ as the class-conditional probability density (probability of x given that the state of nature is w_j for $j = 1, 2$).

$p(x|w_1)$ and $p(x|w_2)$ describe the difference in lightness between populations of sea bass and salmon.
Suppose we know $P(w_j)$ and $p(x|w_j)$ for $j = 1, 2$, and measure the lightness of a fish as the value x.

Define $P(w_j|x)$ as the \textit{a posteriori probability} (probability of the state of nature being w_j given the feature value x).

We can use the \textit{Bayes formula} to convert the prior probability to the posterior probability

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

where $p(x) = \sum_{j=1}^{2} p(x|w_j)P(w_j)$.

Note that, at every x, $P(w_1|x) + P(w_2|x) = 1$.

Making a Decision

- \(p(x|w_j) \) is called the **likelihood** and \(p(x) \) is called the **evidence**.

- How can we make a decision after observing the value of \(x \)?

 Decide\[
 \begin{cases}
 w_1 & \text{if } P(w_1|x) > P(w_2|x) \\
 w_2 & \text{otherwise}
 \end{cases}
 \]

- What is the probability of error for this decision?

 \[
 P(error|x) = \begin{cases}
 P(w_1|x) & \text{if we decide } w_2 \\
 P(w_2|x) & \text{if we decide } w_1
 \end{cases}
 \]
What is the average probability of error?

\[
P(\text{error}) = \int_{-\infty}^{\infty} p(\text{error}, x) \, dx = \int_{-\infty}^{\infty} P(\text{error} | x) p(x) \, dx
\]

Figure 1: Components of the probability of error for a non-optimal decision point \(x^*\). The optimal point \(x_B\) minimizes the total shaded area and gives the Bayes error rate.
Consider the two-category case and define

- w_1: target is present,
- w_2: target is not present.

<table>
<thead>
<tr>
<th>Assigned</th>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>correct detection</td>
<td>mis-detection</td>
</tr>
<tr>
<td>w_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td>false alarm</td>
<td>correct rejection</td>
</tr>
</tbody>
</table>

- Mis-detection is also called false negative or Type I error.
- False alarm is also called false positive or Type II error.
If we use a parameter (e.g., a threshold) in our decision, the plot of these rates for different values of the parameter is called the receiver operating characteristic (ROC) curve.

Figure 2: Example receiver operating characteristic (ROC) curves for different settings of the system.
How can we generalize to

- more than one feature?
 - replace the scalar x by the feature vector \mathbf{x}
- more than two states of nature?
 - just a difference in notation
- allowing actions other than just decisions?
 - allow the possibility of rejection
- different risks in the decision?
 - define how costly each action is
Bayesian Decision Theory shows us how to design an optimal classifier if we know the prior probabilities $P(w_i)$ and the class-conditional densities $p(x|w_i)$.

Unfortunately, we rarely have complete knowledge of the probabilistic structure.

However, we can often find design samples or training data that include particular representatives of the patterns we want to classify.
How can we estimate (learn) the unknown \(p(x|w_j), j = 1, \ldots, c \)?

- **Parametric models**: assume that the form of the density functions are known.
 - Density models (e.g., Gaussian)
 - Mixture models (e.g., mixture of Gaussians)

- **Non-parametric models**: no assumption about the form.
 - Histogram-based estimation
 - Parzen window estimation
 - Nearest neighbor estimation
The Gaussian Density

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.

- **Univariate Gaussian:** for \(x \in \mathbb{R} \)

 \[
p(x) = N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]
 \]

- **Multivariate Gaussian:** for \(x \in \mathbb{R}^d \)

 \[
p(x) = N(\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]
 \]
Figure 3: A univariate Gaussian distribution has roughly 95% of its area in the range $|x - \mu| \leq 2\sigma$.
Figure 4: A bivariate Gaussian. The loci of points of constant density are the ellipses for which \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant, where the eigenvectors of \(\Sigma\) determine the direction and the corresponding eigenvalues determine the length of the principal axes. The quantity \(r^2 = (x - \mu)^T \Sigma^{-1} (x - \mu)\) is called the squared Mahalanobis distance from \(x\) to \(\mu\).
The maximum likelihood estimates of a Gaussian are

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{and} \quad \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T. \]

Figure 5: Gaussian density estimation examples.
Non-parametric methods do not make any assumption about the form of the underlying density.

A very simple method is to partition the space into a number of equally-sized cells (bins) and compute a histogram.

The estimate of the density at a point x becomes

$$p(x) = \frac{k}{nV}$$

(n is the number of samples, k is the number of samples in the cell that includes x, and V is the volume of that cell).
Classification Error

- To apply these results to multiple classes, separate the training samples to \(c \) subsets \(D_1, \ldots, D_c \), with the samples in \(D_i \) belonging to class \(w_i \), and then estimate each density \(p(x|w_i, D_i) \) separately.

- Different sources of error:
 - Bayes error: due to overlapping class-conditional densities (related to the features used).
 - Model error: due to incorrect model.
 - Estimation error: due to estimation from a finite sample (can be reduced by increasing the amount of training data).
Non-Bayesian Classifiers

- Distance-based classifiers:
 - Minimum distance classifier
 - Nearest neighbor classifier

- Decision boundary-based classifiers:
 - Support vector machines
 - Neural networks
 - Decision trees
The k-Nearest Neighbor Classifier

- Given the training data $\mathcal{D} = \{x_1, \ldots, x_n\}$ as a set of labeled examples, the nearest neighbor classifier assigns a test point x the label associated with its closest neighbor in \mathcal{D}.

- The k-nearest neighbor classifier classifies x by assigning it the label most frequently represented among the k nearest samples.

- Closeness is defined using a distance function.

Figure 7: k-NN for $k = 5$.
A general class of metrics for d-dimensional patterns is the **Minkowski metric**

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{1/p}$$

also referred to as the L_p norm.

The **Euclidean distance** is the L_2 norm

$$L_2(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^2 \right)^{1/2}.$$

The **Manhattan** or **city block distance** is the L_1 norm

$$L_1(x, y) = \sum_{i=1}^{d} |x_i - y_i|.$$
Support Vector Machines

- Given a set of training patterns and class labels as
 \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{\pm 1\}\), the goal is to find a classifier function \(f : \mathbb{R}^d \rightarrow \{\pm 1\}\) such that \(f(x) = y\) will correctly classify new patterns.

- **Support vector machines** are based on the class of hyperplanes

\[(w \cdot x) + b = 0, \quad w \in \mathbb{R}^d, b \in \mathbb{R}\]

...corresponding to decision functions

\[f(x) = \text{sign}((w \cdot x) + b).\]
Figure 8: A binary classification problem of separating balls from diamonds. Support vector machines find hyperplane decision boundaries that yield the maximum margin of separation between the classes. The optimal hyperplane is orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and intersects it half way between the two classes.

Note:

\[
\begin{align*}
(w \cdot x_1) + b &= +1 \\
(w \cdot x_2) + b &= -1
\end{align*}
\]

\[
\Rightarrow (w \cdot (x_1 - x_2)) = 2
\]

\[
\Rightarrow \left(\frac{w}{||w||} \cdot (x_1 - x_2) \right) = \frac{2}{||w||}
\]
Neural Networks

Figure 9: A neural network consists of an input layer, an output layer and usually one or more hidden layers that are interconnected by modifiable weights represented by links between layers. They learn the values of these weights as a mapping from the input to the output.
Figure 10: Decision trees classify a pattern through a sequence of questions, in which the next question asked depends on the answer to the current question.
Feature Reduction and Selection

- In practical multicategory applications, it is not unusual to encounter problems involving tens or hundreds of features.
- There are two issues that we must be careful about:
 - How is the classification accuracy affected by the dimensionality (relative to the amount of training data)?
 - How is the computational complexity of the classifier affected by the dimensionality?
Problems of Dimensionality

- Intuitively, it may seem that each feature is useful for at least some of the discriminations.
- Unfortunately, it has frequently been observed in practice that, beyond a certain point, adding new features leads to worse rather than better performance.
- This is called the *curse of dimensionality*.
- Potential reasons include wrong assumptions in model selection or estimation errors due to the finite number of training samples for high-dimensional observations (*overfitting*).
Problems of Dimensionality

- All of the commonly used classifiers can suffer from the curse of dimensionality.
- Dimensionality can be reduced by
 - redesigning the features
 - selecting an appropriate subset among the existing features
 - transforming to different feature spaces
 - *Principal Components Analysis (PCA)* seeks a projection that best represents the data in a least-squares sense.
 - *Linear Discriminant Analysis (LDA)* seeks a projection that best separates the data in a least-squares sense.
Examples

Figure 11: Scatter plot (red dots) and the principal axes for a bivariate sample. The blue line shows the axis e_1 with the greatest variance and the green line shows the axis e_2 with the smallest variance.
Examples

(a) Scatter plot.

(b) Projection onto the first PCA axis.

(c) Projection onto the first LDA axis.

Figure 12: Scatter plot and the PCA and LDA axes for a bivariate sample with two classes. Histogram of the projection onto the first LDA axis shows better separation than the projection onto the first PCA axis.
Unsupervised Learning and Clustering

- **Clustering** is an *unsupervised* procedure that uses unlabeled samples.

- Unsupervised procedures are used for several reasons:
 - Collecting and labeling a large set of sample patterns can be costly or may not be feasible.
 - One can train with large amount of unlabeled data, and then use supervision to label the groupings found.
 - Unsupervised methods can be used for feature extraction.
 - Exploratory data analysis can provide insight into the nature or structure of the data.
Clusters

- A *cluster* is comprised of similar objects grouped together.
- One of the main challenges is to select an appropriate measure of similarity to define clusters that is often both data (cluster shape) and context dependent.
- Clusters may be described as connected regions of a multi-dimensional space containing a relatively high density of points, separated from other such regions by a region containing a relatively low density of points.
Squared-error Partitioning

- Suppose that the given set of n patterns has somehow been partitioned into k clusters $\mathcal{D}_1, \ldots, \mathcal{D}_k$.
- Let n_i be the number of samples in \mathcal{D}_i and let m_i be the mean of those samples

\[
m_i = \frac{1}{n_i} \sum_{x \in \mathcal{D}_i} x.
\]

- Then, the sum-of-squared errors is defined by

\[
J_e = \sum_{i=1}^{k} \sum_{x \in \mathcal{D}_i} \|x - m_i\|^2.
\]

- For a given cluster \mathcal{D}_i, the mean vector m_i (centroid) is the best representative of the samples in \mathcal{D}_i.
Squared-error Partitioning

- A general algorithm for iterative squared-error partitioning:
 1. Select an initial partition with k clusters. Repeat steps 2 through 5 until the cluster membership stabilizes.
 2. Generate a new partition by assigning each pattern to its closest cluster center.
 3. Compute new cluster centers as the centroids of the clusters.
 4. Repeat steps 2 and 3 until an optimum value of the criterion function is found (e.g., when a local minimum is found or a predefined number of iterations are completed).
 5. Adjust the number of clusters by merging and splitting existing clusters or by removing small or outlier clusters.

- This algorithm, without step 5, is also known as the k-means algorithm.
Hierarchical Clustering

- The k-means algorithm produces a *flat* data description where the clusters are disjoint and are at the same level.
- In some applications, groups of patterns share some characteristics when looked at a particular level.
- Hierarchical clustering tries to capture these multi-level groupings using *hierarchical* representations rather than flat partitions.
Hierarchical Clustering

- **Agglomerative Hierarchical Clustering:**
 1. Specify the number of clusters. Place every pattern in a unique cluster and repeat steps 2 and 3 until a partition with the required number of clusters is obtained.
 2. Find the closest clusters according to a distance measure.
 3. Merge these two clusters.

- Popular distance measures (for two clusters \mathcal{D}_i and \mathcal{D}_j):

 \[
 d_{\text{min}}(\mathcal{D}_i, \mathcal{D}_j) = \min_{x \in \mathcal{D}_i, x' \in \mathcal{D}_j} \| x - x' \|
 \]

 \[
 d_{\text{max}}(\mathcal{D}_i, \mathcal{D}_j) = \max_{x \in \mathcal{D}_i, x' \in \mathcal{D}_j} \| x - x' \|
 \]

 \[
 d_{\text{avg}}(\mathcal{D}_i, \mathcal{D}_j) = \frac{1}{\# \mathcal{D}_i \# \mathcal{D}_j} \sum_{x \in \mathcal{D}_i} \sum_{x' \in \mathcal{D}_j} \| x - x' \|
 \]

 \[
 d_{\text{mean}}(\mathcal{D}_i, \mathcal{D}_j) = \| \mathbf{m}_i - \mathbf{m}_j \|
 \]
We have seen many learning algorithms and techniques for pattern recognition.

Some of these algorithms may be preferred because of their lower computational complexity.

Others may be preferred because they take into account some prior knowledge of the form of the data.

Given practical constraints such as finite training data, no pattern classification method is inherently superior to any other.
Classification error can be estimated using misclassification and false alarm rates.

To compare learning algorithms, we should use independent training and test data generated using
- static division,
- rotated division (e.g., cross-validation),
- bootstrap methods.

Using the error on samples not in the training set (also called the off-training set error) is important for evaluating the generalization ability of an algorithm.
Combining Classifiers

- Just like different features capturing different properties of a pattern, different classifiers also capture different structures and relationships of these patterns in the feature space.
- An empirical comparison of different classifiers can help us choose one of them as the best classifier for the problem.
- However, although most classifiers may have similar error rates, sets of patterns misclassified by different classifiers do not necessarily overlap.
- Combining the advantages of multiple classifiers is often called combined classifiers, ensemble classifiers, mixture-of-expert models, or pooled classifiers.
Combining Classifiers

Some of the reasons for combining multiple classifiers to solve a given classification problem are:

- Access to different classifiers, each developed in a different context and for an entirely different representation of the same problem.
- Availability of multiple training sets, each collected at a different time or in a different environment, even may use different features.
- Local performances of different classifiers where each classifier may have its own region in the feature space where it performs the best.
- Different performances due to different initializations and randomness inherent in the training procedure.
Combining Classifiers

- Combination architectures can be grouped as:
 - **Parallel**: all classifiers are invoked independently and then their results are combined by a combiner.
 - **Serial (cascading)**: individual classifiers are invoked in a linear sequence where the number of possible classes for a given pattern is gradually reduced.
 - **Hierarchical (tree)**: individual classifiers are combined into a structure, which is similar to that of a decision tree, where the nodes are associated with the classifiers.
Combining Classifiers

- Examples of classifier combination schemes are:
 - **Majority voting** where each classifier makes a binary decision (vote) about each class and the final decision is made in favor of the class with the largest number of votes.
 - **Bayesian combination**: sum, product, maximum, minimum and median of the posterior probabilities from individual classifiers.
 - **Bagging** where multiple classifiers are built by bootstrapping the original training set.
 - **Boosting** where a sequence of classifiers is built by training each classifier using data sampled from a distribution derived from the empirical misclassification rate of the previous classifier.
Structural and Syntactic Pattern Recognition

- Statistical pattern recognition attempts to classify patterns based on a set of extracted features and an underlying statistical model for the generation of these patterns.

- Ideally, this is achieved with a rather straightforward procedure:
 - determine the feature vector,
 - train the system,
 - classify the patterns.

- Unfortunately, there are also many problems where patterns contain structural and relational information that are difficult or impossible to quantify in feature vector form.
Structural and Syntactic Pattern Recognition

- **Structural pattern recognition** assumes that pattern structure is quantifiable and extractable so that structural similarity of patterns can be assessed.
- Typically, these approaches formulate hierarchical descriptions of complex patterns built up from simpler primitive elements.
- This structure quantification and description are mainly done using:
 - Formal grammars,
 - Relational descriptions (principally graphs).
- Then, recognition and classification are done using:
 - Parsing (for formal grammars),
 - Relational graph matching (for relational descriptions).