Non-Bayesian Classifiers
Part I: k-Nearest Neighbor Classifier and Distance Functions

Selim Aksoy

Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

CS 551, Fall 2015
Non-Bayesian Classifiers

- We have been using Bayesian classifiers that make decisions according to the posterior probabilities.
- We have discussed parametric and non-parametric methods for learning classifiers by estimating the probabilities using training data.
- We will study new techniques that use training data to learn the classifiers directly without estimating any probabilistic structure.
- In particular, we will study the k-nearest neighbor classifier, linear discriminant functions, and support vector machines.
The Nearest Neighbor Classifier

- Given the training data $\mathcal{D} = \{x_1, \ldots, x_n\}$ as a set of n labeled examples, the nearest neighbor classifier assigns a test point x the label associated with its closest neighbor in \mathcal{D}.

- Closeness is defined using a distance function.

- Given the distance function, the nearest neighbor classifier partitions the feature space into cells consisting of all points closer to a given training point than to any other training points.
The Nearest Neighbor Classifier

- All points in such a cell are labeled by the class of the training point, forming a *Voronoi tesselation* of the feature space.

Figure 1: In two dimensions, the nearest neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the class of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal.
The k-Nearest Neighbor Classifier

- The k-nearest neighbor classifier classifies x by assigning it the label most frequently represented among the k nearest samples.
- In other words, a decision is made by examining the labels on the k-nearest neighbors and taking a vote.

Figure 2: The k-nearest neighbor query forms a spherical region around the test point x until it encloses k training samples, and it labels the test point by a majority vote of these samples. In the case for $k = 5$, the test point will be labeled as black.
The k-Nearest Neighbor Classifier

- The computational complexity of the nearest neighbor algorithm — both in space (storage) and time (search) — has received a great deal of analysis.

- In the most straightforward approach, we inspect each stored training point one by one, calculate its distance to x, and keep a list of the k closest ones.

- There are some parallel implementations and algorithmic techniques for reducing the computational load in nearest neighbor searches.
Examples of algorithmic techniques include

- computing partial distances using a subset of dimensions, and eliminating the points with partial distances greater than the full distance of the current closest points,
- using search trees that are hierarchically structured so that only a subset of the training points are considered during search,
- editing the training set by eliminating the points that are surrounded by other training points with the same class label.
The nearest neighbor classifier relies on a *metric* or a *distance function* between points. For all points \(x, y \) and \(z \), a metric \(D(\cdot, \cdot) \) must satisfy the following properties:

- **Nonnegativity:** \(D(x, y) \geq 0 \).
- **Reflexivity:** \(D(x, y) = 0 \) if and only if \(x = y \).
- **Symmetry:** \(D(x, y) = D(y, x) \).
- **Triangle inequality:** \(D(x, y) + D(y, z) \geq D(x, z) \).

If the second property is not satisfied, \(D(\cdot, \cdot) \) is called a *pseudometric*.
Distance Functions

- A general class of metrics for d-dimensional patterns is the *Minkowski metric*

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{1/p}$$

also referred to as the L_p norm.

- The *Euclidean distance* is the L_2 norm

$$L_2(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^2 \right)^{1/2}.$$

- The *Manhattan* or *city block distance* is the L_1 norm

$$L_1(x, y) = \sum_{i=1}^{d} |x_i - y_i|.$$
The L_{∞} norm is the maximum of the distances along individual coordinate axes

$$L_{\infty}(x, y) = \max_{i=1}^{d} |x_i - y_i|.$$

Figure 3: Each colored shape consists of points at a distance 1.0 from the origin, measured using different values of p in the Minkowski L_p metric.
We should be careful about scaling of the coordinate axes when we compute these metrics.

When there is great difference in the range of the data along different axes in a multidimensional space, these metrics implicitly assign more weighting to features with large ranges than those with small ranges.

Feature normalization can be used to approximately equalize ranges of the features and make them have approximately the same effect in the distance computation.

The following methods can be used to independently normalize each feature.
Feature Normalization

- **Linear scaling to unit range:**
 Given a lower bound \(l \) and an upper bound \(u \) for a feature \(x \in \mathbb{R} \),
 \[
 \tilde{x} = \frac{x - l}{u - l}
 \]
 results in \(\tilde{x} \) being in the \([0, 1]\) range.

- **Linear scaling to unit variance:**
 A feature \(x \in \mathbb{R} \) can be transformed to a random variable with zero mean and unit variance as
 \[
 \tilde{x} = \frac{x - \mu}{\sigma}
 \]
 where \(\mu \) and \(\sigma \) are the sample mean and the sample standard deviation of that feature, respectively.
Feature Normalization

- **Normalization using the cumulative distribution function:**
 Given a random variable \(x \in \mathbb{R} \) with cumulative distribution function \(F(x) \), the random variable \(\tilde{x} \) resulting from the transformation \(\tilde{x} = F(x) \) will be uniformly distributed in \([0, 1]\).

- **Rank normalization:**
 Given the sample for a feature as \(x_1, \ldots, x_n \in \mathbb{R} \), first we find the order statistics \(x(1), \ldots, x(n) \) and then replace each pattern’s feature value by its corresponding normalized rank as

 \[
 \tilde{x}_i = \frac{\text{rank}(x_i) - 1}{n - 1}
 \]

 where \(x_i \) is the feature value for the \(i \)’th pattern. This procedure uniformly maps all feature values to the \([0, 1]\) range.