Non-Bayesian Classifiers
Part I: k-Nearest Neighbor Classifier and Distance Functions

Selim Aksoy

Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

CS 551, Fall 2016
Non-Bayesian Classifiers

- We have been using Bayesian classifiers that make decisions according to the posterior probabilities.
- We have discussed parametric and non-parametric methods for learning classifiers by estimating the probabilities using training data.
- We will study new techniques that use training data to learn the classifiers directly without estimating any probabilistic structure.
- In particular, we will study the k-nearest neighbor classifier, linear discriminant functions, and support vector machines.
The Nearest Neighbor Classifier

- Given the training data $\mathcal{D} = \{x_1, \ldots, x_n\}$ as a set of n labeled examples, the nearest neighbor classifier assigns a test point x the label associated with its closest neighbor in \mathcal{D}.

- Closeness is defined using a distance function.

- Given the distance function, the nearest neighbor classifier partitions the feature space into cells consisting of all points closer to a given training point than to any other training points.
The Nearest Neighbor Classifier

- All points in such a cell are labeled by the class of the training point, forming a *Voronoi tessellation* of the feature space.

![Voronoi diagram](image)

Figure 1: In two dimensions, the nearest neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the class of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal.
The k-Nearest Neighbor Classifier

- The k-nearest neighbor classifier classifies x by assigning it the label most frequently represented among the k nearest samples.
- In other words, a decision is made by examining the labels on the k-nearest neighbors and taking a vote.

Figure 2: The k-nearest neighbor query forms a spherical region around the test point x until it encloses k training samples, and it labels the test point by a majority vote of these samples. In the case for $k = 5$, the test point will be labeled as black.
The k-Nearest Neighbor Classifier

- The computational complexity of the nearest neighbor algorithm — both in space (storage) and time (search) — has received a great deal of analysis.
- In the most straightforward approach, we inspect each stored training point one by one, calculate its distance to x, and keep a list of the k closest ones.
- There are some parallel implementations and algorithmic techniques for reducing the computational load in nearest neighbor searches.
The k-Nearest Neighbor Classifier

- Examples of algorithmic techniques include
 - computing partial distances using a subset of dimensions, and eliminating the points with partial distances greater than the full distance of the current closest points,
 - using search trees that are hierarchically structured so that only a subset of the training points are considered during search,
 - editing the training set by eliminating the points that are surrounded by other training points with the same class label.
Distance Functions

- The nearest neighbor classifier relies on a metric or a distance function between points.
- For all points x, y and z, a metric $D(\cdot, \cdot)$ must satisfy the following properties:
 - Nonnegativity: $D(x, y) \geq 0$.
 - Reflexivity: $D(x, y) = 0$ if and only if $x = y$.
 - Symmetry: $D(x, y) = D(y, x)$.
 - Triangle inequality: $D(x, y) + D(y, z) \geq D(x, z)$.
- If the second property is not satisfied, $D(\cdot, \cdot)$ is called a pseudometric.
A general class of metrics for d-dimensional patterns is the *Minkowski metric*

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{1/p}$$

also referred to as the L_p *norm*.

The *Euclidean distance* is the L_2 norm

$$L_2(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^2 \right)^{1/2}.$$

The *Manhattan* or *city block distance* is the L_1 norm

$$L_1(x, y) = \sum_{i=1}^{d} |x_i - y_i|.$$
The L_∞ norm is the maximum of the distances along individual coordinate axes

$$L_\infty(x, y) = \max_{i=1}^{d} |x_i - y_i|.$$

Figure 3: Each colored shape consists of points at a distance 1.0 from the origin, measured using different values of p in the Minkowski L_p metric.
Feature Normalization

- We should be careful about scaling of the coordinate axes when we compute these metrics.
- When there is great difference in the range of the data along different axes in a multidimensional space, these metrics implicitly assign more weighting to features with large ranges than those with small ranges.
- Feature normalization can be used to approximately equalize ranges of the features and make them have approximately the same effect in the distance computation.
- The following methods can be used to independently normalize each feature.
Feature Normalization

- **Linear scaling to unit range:**
 Given a lower bound l and an upper bound u for a feature $x \in \mathbb{R}$,
 \[
 \tilde{x} = \frac{x - l}{u - l}
 \]
 results in \tilde{x} being in the $[0, 1]$ range.

- **Linear scaling to unit variance:**
 A feature $x \in \mathbb{R}$ can be transformed to a random variable with zero mean and unit variance as
 \[
 \tilde{x} = \frac{x - \mu}{\sigma}
 \]
 where μ and σ are the sample mean and the sample standard deviation of that feature, respectively.
Feature Normalization

- **Normalization using the cumulative distribution function:**
 Given a random variable \(x \in \mathbb{R} \) with cumulative distribution function \(F_x(x) \), the random variable \(\tilde{x} \) resulting from the transformation \(\tilde{x} = F_x(x) \) will be uniformly distributed in \([0, 1]\).

- **Rank normalization:**
 Given the sample for a feature as \(x_1, \ldots, x_n \in \mathbb{R} \), first we find the order statistics \(x^{(1)}, \ldots, x^{(n)} \) and then replace each pattern’s feature value by its corresponding normalized rank as

 \[
 \tilde{x}_i = \frac{\text{rank}(x_i) - 1}{n - 1}
 \]

 where \(x_i \) is the feature value for the \(i \)’th pattern. This procedure uniformly maps all feature values to the \([0, 1]\) range.