
Parametric Models
Part III: Hidden Markov Models

Selim Aksoy

Department of Computer Engineering
Bilkent University

saksoy@cs.bilkent.edu.tr

CS 551, Fall 2016

CS 551, Fall 2016 c©2016, Selim Aksoy (Bilkent University) 1 / 30



Discrete Markov Processes (Markov Chains)

I The goal is to make a sequence of decisions where a
particular decision may be influenced by earlier decisions.

I Consider a system that can be described at any time as
being in one of a set of N distinct states w1, w2, . . . , wN .

I Let w(t) denote the actual state at time t where t = 1, 2, . . ..

I The probability of the system being in state w(t) is
P (w(t)|w(t− 1), . . . , w(1)).
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First-Order Markov Models

I We assume that the state w(t) is conditionally independent
of the previous states given the predecessor state w(t− 1),
i.e.,

P (w(t)|w(t− 1), . . . , w(1)) = P (w(t)|w(t− 1)).

I We also assume that the Markov Chain defined by
P (w(t)|w(t− 1)) is time homogeneous (independent of the
time t).
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First-Order Markov Models

I A particular sequence of states of length T is denoted by

WT = {w(1), w(2), . . . , w(T )}.

I The model for the production of any sequence is described
by the transition probabilities

aij = P (w(t) = wj|w(t− 1) = wi)

where i, j ∈ {1, . . . , N}, aij ≥ 0, and
∑N

j=1 aij = 1,∀i.
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First-Order Markov Models

I There is no requirement that the transition probabilities are
symmetric (aij 6= aji, in general).

I Also, a particular state may be visited in succession
(aii 6= 0, in general) and not every state need to be visited.

I This process is called an observable Markov model
because the output of the process is the set of states at
each instant of time, where each state corresponds to a
physical (observable) event.
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First-Order Markov Model Examples

I Consider the following 3-state first-order Markov model of
the weather in Ankara:

I w1: rain/snow

I w2: cloudy

I w3: sunny

Θ = {aij}

=

0.4 0.3 0.3

0.2 0.6 0.2

0.1 0.1 0.8
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First-Order Markov Model Examples

I We can use this model to answer the following: Starting with
sunny weather on day 1, what is the probability that the weather
for the next seven days will be “sunny-sunny-rainy-rainy-sunny-
cloudy-sunny” (W8 = {w3, w3, w3, w1, w1, w3, w2, w3})?

I Solution:

P (W8|Θ) = P (w3, w3, w3, w1, w1, w3, w2, w3)

= P (w3)P (w3|w3)P (w3|w3)P (w1|w3)

P (w1|w1)P (w3|w1)P (w2|w3)P (w3|w2)

= P (w3) a33 a33 a31 a11 a13 a32 a23

= 1× 0.8× 0.8× 0.1× 0.4× 0.3× 0.1× 0.2

= 1.536× 10−4
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First-Order Markov Model Examples

I Consider another question: Given that the model is in a known
state, what is the probability that it stays in that state for exactly d
days?

I Solution:

Wd+1 = {w(1) = wi, w(2) = wi, . . . , w(d) = wi, w(d+1) = wj 6= wi}

P (Wd+1|Θ, w(1) = wi) = (aii)
d−1(1− aii)

E[d|wi] =

∞∑
d=1

d (aii)
d−1 (1− aii) =

1

1− aii

I For example, the expected number of consecutive days of sunny
weather is 5, cloudy weather is 2.5, rainy weather is 1.67.
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First-Order Hidden Markov Models

I We can extend this model to the case where the
observation (output) of the system is a probabilistic function
of the state.

I The resulting model, called a Hidden Markov Model (HMM),
has an underlying stochastic process that is not observable
(it is hidden), but can only be observed through another set
of stochastic processes that produce a sequence of
observations.
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First-Order Hidden Markov Models

I We denote the observation at time t as v(t) and the
probability of producing that observation in state w(t) as
P (v(t)|w(t)).

I There are many possible state-conditioned observation
distributions.

I When the observations are discrete, the distributions

bjk = P (v(t) = vk|w(t) = wj)

are probability mass functions where j ∈ {1, . . . , N},
k ∈ {1, . . . ,M}, bjk ≥ 0, and

∑M
k=1 bjk = 1, ∀j.
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First-Order Hidden Markov Models

I When the observations are continuous, the distributions are
typically specified using a parametric model family where
the most common family is the Gaussian mixture

bj(x) =

Mj∑
k=1

αjk p(x|µjk,Σjk)

where αjk ≥ 0 and
∑Mj

k=1 αjk = 1, ∀j.
I We will restrict ourselves to discrete observations where a

particular sequence of visible states of length T is denoted
by

VT = {v(1), v(2), . . . , v(T )}.
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First-Order Hidden Markov Models

I An HMM is characterized by:
I N , the number of hidden states
I M , the number of distinct observation symbols per state
I {aij}, the state transition probability distribution
I {bjk}, the observation symbol probability distribution
I {πi = P (w(1) = wi)}, the initial state distribution
I Θ = ({aij}, {bjk}, {πi}), the complete parameter set of the

model
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First-Order HMM Examples

I Consider the “urn and ball” example (Rabiner, 1989):
I There are N large urns in the room.
I Within each urn, there are a large number of colored balls

where the number of distinct colors is M .
I An initial urn is chosen according to some random process,

and a ball is chosen at random from it.
I The ball’s color is recorded as the observation and it is put

back to the urn.
I A new urn is selected according to the random selection

process associated with the current urn and the ball
selection process is repeated.
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First-Order HMM Examples

I The simplest HMM that corresponds to the urn and ball
selection process is the one where

I each state corresponds to a specific urn,
I a ball color probability is defined for each state.
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First-Order HMM Examples

I Let’s extend the weather example.

I Assume that you have a friend who lives in İstanbul and you
talk daily about what each of you did that day.

I Your friend has a list of activities that she/he does every day
(such as playing sports, shopping, studying) and the choice
of what to do is determined exclusively by the weather on a
given day.

I Assume that İstanbul has a weather state distribution similar
to the one in the previous example.

I You have no information about the weather where your friend
lives, but you try to guess what it must have been like
according to the activity your friend did.
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First-Order HMM Examples

I This process can be modeled using an HMM where the state of
the weather is the hidden variable, and the activity your friend did
is the observation.

I Given the model and the activity of your friend, you can make a
guess about the weather in İstanbul that day.

I For example, if your friend says that she/he played sports on the
first day, went shopping on the second day, and studied on the
third day of the week, you can answer questions such as:

I What is the overall probability of this sequence of
observations?

I What is the most likely weather sequence that would explain
these observations?
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Applications of HMMs

I Speech recognition

I Optical character recognition

I Natural language processing (e.g., text summarization)

I Bioinformatics (e.g., protein sequence modeling)

I Image time series (e.g., change detection)

I Video analysis (e.g., story segmentation, motion tracking)

I Robot planning (e.g., navigation)

I Economics and finance (e.g., time series, customer
decisions)
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Three Fundamental Problems for HMMs

I Evaluation problem: Given the model, compute the
probability that a particular output sequence was produced
by that model (solved by the forward algorithm).

I Decoding problem: Given the model, find the most likely
sequence of hidden states which could have generated a
given output sequence (solved by the Viterbi algorithm).

I Learning problem: Given a set of output sequences, find
the most likely set of state transition and output probabilities
(solved by the Baum-Welch algorithm).

CS 551, Fall 2016 c©2016, Selim Aksoy (Bilkent University) 18 / 30



HMM Evaluation Problem

I A particular sequence of observations of length T is
denoted by

VT = {v(1), v(2), . . . , v(T )}.

I The probability of observing this sequence can be
computed by enumerating every possible state sequence of
length T as

P (VT |Θ) =
∑

allWT

P (VT ,WT |Θ)

=
∑

allWT

P (VT |WT ,Θ)P (WT |Θ).
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HMM Evaluation Problem

I This summation includes NT terms in the form

P (VT |WT )P (WT ) =

(
T∏
t=1

P (v(t)|w(t))

)(
T∏
t=1

P (w(t)|w(t− 1))

)

=

T∏
t=1

P (v(t)|w(t))P (w(t)|w(t− 1))

where P (w(t)|w(t− 1)) for t = 1 is P (w(1)).

I It is unfeasible with computational complexity O(NTT ).

I However, a computationally simpler algorithm called the
forward algorithm computes P (VT |Θ) recursively.
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HMM Evaluation Problem

I Define αj(t) as the probability that the HMM is in state wj at
time t having generated the first t observations in VT

αj(t) = P (v(1), v(2), . . . , v(t), w(t) = wj|Θ).

I αj(t), j = 1, . . . , N can be computed as

αj(t) =

πjbjv(1) t = 1(∑N
i=1 αi(t− 1)aij

)
bjv(t) t = 2, . . . , T.

I Then, P (VT |Θ) =
∑N

j=1 αj(T ).
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HMM Evaluation Problem

I Similarly, we can define a backward algorithm where

βi(t) = P (v(t+ 1), v(t+ 2), . . . , v(T )|w(t) = wi,Θ)

is the probability that the HMM will generate the
observations from t+ 1 to T in VT given that it is in state wi

at time t.
I βi(t), i = 1, . . . , N can be computed as

βi(t) =

1 t = T∑N
j=1 βj(t+ 1)aijbjv(t+1) t = T − 1, . . . , 1.

I Then, P (VT |Θ) =
∑N

i=1 βi(1)πibiv(1).
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HMM Evaluation Problem

I The computations of both αj(t) and βi(t) have complexity
O(N2T ).

I For classification, we can compute the posterior
probabilities

P (Θ|VT ) =
P (VT |Θ)P (Θ)

P (VT )

where P (Θ) is the prior for a particular class, and P (VT |Θ)

is computed using the forward algorithm with the HMM for
that class.

I Then, we can select the class with the highest posterior.
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HMM Decoding Problem

I Given a sequence of observations VT , we would like to find
the most probable sequence of hidden states.

I One possible solution is to enumerate every possible
hidden state sequence and calculate the probability of the
observed sequence with O(NTT ) complexity.

I We can also define the problem of finding the optimal state
sequence as finding the one that includes the states that
are individually most likely.

I This also corresponds to maximizing the expected number
of correct individual states.
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HMM Decoding Problem

I Define γi(t) as the probability that the HMM is in state wi at
time t given the observation sequence VT

γi(t) = P (w(t) = wi|VT ,Θ)

=
αi(t)βi(t)

P (VT |Θ)
=

αi(t)βi(t)∑N
j=1 αj(t)βj(t)

where
∑N

i=1 γi(t) = 1.

I Then, the individually most likely state w(t) at time t
becomes

w(t) = wi′ where i′ = arg max
i=1,...,N

γi(t).
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HMM Decoding Problem

I One problem is that the resulting sequence may not be
consistent with the underlying model because it may include
transitions with zero probability (aij = 0 for some i and j).

I One possible solution is the Viterbi algorithm that finds the
single best state sequenceWT by maximizing
P (WT |VT ,Θ) (or equivalently P (WT ,VT |Θ)).

I This algorithm recursively computes the state sequence
with the highest probability at time t and keeps track of the
states that form the sequence with the highest probability at
time T (see Rabiner (1989) for details).
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HMM Learning Problem

I The goal is to determine the model parameters {aij}, {bjk}
and {πi} from a collection of training samples.

I Define ξij(t) as the probability that the HMM is in state wi at
time t− 1 and state wj at time t given the observation
sequence VT

ξij(t) = P (w(t− 1) = wi, w(t) = wj|VT ,Θ)

=
αi(t− 1) aij bjv(t) βj(t)

P (VT |Θ)

=
αi(t− 1) aij bjv(t) βj(t)∑N

i=1

∑N
j=1 αi(t− 1) aij bjv(t) βj(t)

.
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HMM Learning Problem

I γi(t) defined in the decoding problem and ξij(t) defined
here can be related as

γi(t− 1) =
N∑
j=1

ξij(t).

I Then, âij, the estimate of the probability of a transition from
wi at t− 1 to wj at t, can be computed as

âij =
expected number of transitions from wi to wj

expected total number of transitions away from wi

=

∑T
t=2 ξij(t)∑T

t=2 γi(t− 1)
.
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HMM Learning Problem

I Similarly, b̂jk, the estimate of the probability of observing the
symbol vk while in state wj, can be computed as

b̂jk =
expected number of times observing symbol vk in state wj

expected total number of times in wj

=

∑T
t=1 δv(t),vkγj(t)∑T

t=1 γj(t)

where δv(t),vk is the Kronecker delta which is 1 only when
v(t) = vk.

I Finally, π̂i, the estimate for the initial state distribution, can
be computed as π̂i = γi(1) which is the expected number of
times in state wi at time t = 1.
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HMM Learning Problem

I These are called the Baum-Welch equations (also called
the EM estimates for HMMs or the forward-backward
algorithm) that can be computed iteratively until some
convergence criterion is met (e.g., sufficiently small
changes in the estimated values in subsequent iterations).

I See (Bilmes, 1998) for the estimates b̂j(x) when the
observations are continuous and their distributions are
modeled using Gaussian mixtures.
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