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Introduction

I We looked at directed graphical models whose structure
and parametrization provide a natural representation for
many real-world problems.

I Undirected graphical models are useful where one cannot
naturally ascribe a directionality to the interaction between
the variables.
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Introduction

I An example model that satisfies:
I (A ⊥ C|{B,D})
I (B ⊥ D|{A,C})
I No other independencies

I These independencies cannot be
naturally captured in a Bayesian
network.
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Figure 1: An example
undirected graphical model.
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An Example

I Four students are working together in pairs on a homework.

I Alice and Charles cannot stand each other, and Bob and
Debbie had a relationship that ended badly.

I Only the following pairs meet: Alice and Bob; Bob and
Charles; Charles and Debbie; and Debbie and Alice.

I The professor accidentally misspoke in the class, giving rise
to a possible misconception.

I In study pairs, each student transmits her/his understanding
of the problem.
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An Example

I Four binary random variables are defined, representing
whether the student has a misconception or not.

I Assume that for each X ∈ {A,B,C,D}, x1 denotes the
case where the student has the misconception, and x0

denotes the case where she/he does not.

I Alice and Charles never speak to each other directly, so A
and C are conditionally independent given B and D.

I Similarly, B and D are conditionally independent given A
and C.
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An Example
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Figure 2: Example models for the misconception example. (a) An undirected
graph modeling study pairs over four students. (b) An unsuccessful attempt
to model the problem using a Bayesian network. (c) Another unsuccessful
attempt.
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Parametrization

I How to parametrize this undirected graph?

I We want to capture the affinities between related variables.

I Conditional probability distributions cannot be used
because they are not symmetric, and the chain rule need
not apply.

I Marginals cannot be used because a product of marginals
does not define a consistent joint.

I A general purpose function: factor (also called potential).
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Parametrization

I Let D is a set of random variables.
I A factor φ is a function from Val(D) to R.
I A factor is nonnegative if all its entries are nonnegative.
I The set of variables D is called the scope of the factor.

I In the example in Figure 2, an example factor is

φ1(A,B) : Val(A,B) 7→ R+.
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Parametrization

Table 1: Factors for the misconception example.

φ1(A,B) φ2(B,C) φ3(C,D) φ4(D,A)

a0 b0 30 b0 c0 100 c0 d0 1 d0 a0 100

a0 b1 5 b0 c1 1 c0 d1 100 d0 a1 1

a1 b0 1 b1 c0 1 c1 d0 100 d1 a0 1

a1 b1 10 b1 c1 100 c1 d1 1 d1 a1 100
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Parametrization

I The value associated with a particular assignment a, b
denotes the affinity between these two variables: the higher
the value φ1(a, b), the more compatible these two values
are.

I For φ1, if A and B disagree, there is less weight.

I For φ3 , if C and D disagree, there is more weight.

I A factor is not normalized, i.e., the entries are not
necessarily in [0, 1].
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Parametrization

I The Markov network defines the local interactions between
directly related variables.

I To define a global model, we need to combine these
interactions.

I We combine the local models by multiplying them as

P (a, b, c, d) = φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a).
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Parametrization

I However, there is no guarantee that the result of this
process is a normalized joint distribution.

I Thus, it is normalized as

P (a, b, c, d) =
1

Z
φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

where
Z =

∑
a,b,c,d

φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a).

I Z is known as the partition function.
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Parametrization

Table 2: Joint distribution for the misconception example.

Assignment Unnormalized Normalized
a0 b0 c0 d0 300, 000 0.04

a0 b0 c0 d1 300, 000 0.04

a0 b0 c1 d0 300, 000 0.04

a0 b0 c1 d1 30 4.110−6

a0 b1 c0 d0 500 6.910−5

a0 b1 c0 d1 500 6.910−5

a0 b1 c1 d0 5, 000, 000 0.69

a0 b1 c1 d1 500 6.910−5

a1 b0 c0 d0 100 1.410−5

a1 b0 c0 d1 1, 000, 000 0.14

a1 b0 c1 d0 100 1.410−5

a1 b0 c1 d1 100 1.410−5

a1 b1 c0 d0 10 1.410−6

a1 b1 c0 d1 100, 000 0.014

a1 b1 c1 d0 100, 000 0.014

a1 b1 c1 d1 100, 000 0.014
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Parametrization

I There is a tight connection between the factorization of the
distribution and its independence properties.

I For example, P |= (X ⊥ Y|Z) if and only if we can write P
in the form P (X ) = φ1(X,Z)φ2(Y,Z).

I From the example in Figure 2,

P (A,B,C,D) =
1

Z
φ1(A,B)φ2(B,C)φ3(C,D)φ4(D,A),

we can infer that

P |= A ⊥ C|{B,D}),
P |= B ⊥ D|{A,C}).
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Parametrization

I Factors do not correspond to either probabilities or to
conditional probabilities.

I It is harder to estimate them from data.

I One idea for parametrization could be to associate
parameters directly with the edges in the graph.

I This is not sufficient to parametrize a full distribution.
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Parametrization

I A more general representation can be obtained by allowing
factors over arbitrary subsets of variables.

I Let X, Y, and Z be three disjoint sets of variables, and let
φ1(X,Y) and φ2(Y,Z) be two factors.

I We define the factor product φ1 × φ2 to be a factor
ψ : Val(X,Y,Z) 7→ R as follows:

ψ(X,Y,Z) = φ1(X,Y)φ2(Y,Z).

I The key aspect is the fact that the two factors φ1 and φ2 are
multiplied in way that matches up the common part Y.
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Parametrization
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Figure 3: An example of factor product.
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Parametrization

I Note that the factors are not marginals.

I In the misconception model, the marginal over A,B is
a0 b0 0.13

a0 b1 0.69

a1 b0 0.14

a1 b1 0.04

but the factor is

a0 b0 30

a0 b1 5

a1 b0 1

a1 b1 10

I A factor is only one contribution to the overall joint
distribution.

I The distribution as a whole has to take into consideration
the contributions from all of the factors involved.
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Gibbs Distributions

I We can use the more general notion of factor product to
define an undirected parametrization of a distribution.

I A distribution PΦ is a Gibbs distribution parametrized by a
set of factors Φ = {φ1(D1), . . . , φK(DK)} if it is defined as
follows:

PΦ(X1, . . . , Xn) =
1

Z
φ1(D1)× . . .× φK(DK)

where
Z =

∑
X1,...,Xn

φ1(D1)× . . .× φK(DK)

is the partition function.
I The Di are the scopes of the factors.
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Gibbs Distributions

I If our parametrization contains a factor whose scope
contains both X and Y , we would like the associated
Markov network structure H to contain an edge between X
and Y .

I We say that a distribution PΦ with
Φ = {φ1(D1), . . . , φK(DK)} factorizes over a Markov
network H if each Dk, k = 1, . . . , K, is a complete subgraph
of H.

I The factors that parametrize a Markov network are often
called clique potentials.
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Gibbs Distributions

I We can reduce the number of factors by allowing factors
only for maximal cliques.

I However, the parametrization using maximal clique
potentials generally obscures structure that is present in the
original set of factors.
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Figure 4: The cliques in two simple Markov networks. (a) {A,B}, {B,C},
{C,D}, and {D,A}. (b) {A,B,D} and {B,C,D}.
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Reduced Markov Networks

I If we observe some values, U = u, in the factor value table,
we can eliminate the entries which are inconsistent with
U = u.

I Let H be a Markov network over X and U = u a context.
The reduced Markov network H[u] is a Markov network
over the nodes W = X−U, where we have an edge X—Y

if there is an edge X—Y in H.
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Reduced Markov Networks
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Figure 5: A reduced Markov network example. (a) Original set of factors. (b)
Reduced to the context G = g. (c) Reduced to the context G = g, S = s.
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Reduced Markov Networks

I Conditioning on a context U in Markov networks eliminates
edges from the graph.

I In a Bayesian network, conditioning on evidence can create
new dependencies.
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Reduced Markov Networks

I Markov Random Fields:
I Pairwise Markov network.
I They are simple.
I Interactions on edges are an important special case that

often arises in practice.
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Markov Network Independencies

I Let H be a Markov network and let X1—. . .—Xk be a path
in H.

I Let Z ⊆ X be a set of observed variables.

I The path X1—. . .—Xk is active given Z if none of the Xi’s,
i = 1, . . . , k, is in Z.

I A set of nodes Z separates X and Y in H, denoted
sepH(X;Y|Z), if there is no active path between any node
X ∈ X and Y ∈ Y given Z.

I We define the global independencies associated with H to
be

I(H) = {(X ⊥ Y|Z) : sepH(X;Y|Z)}.
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Learning Undirected Models

I Like in Bayesian networks, once the joint distribution is
generated, any kind of question can be answered using
conditional probabilities and marginalization.

I However, a key distinction between Markov networks and
Bayesian networks is normalization.

I Markov networks use a global normalization constant called
the partition function.

I Bayesian networks involve local normalization within each
conditional probability distribution.

CS 551, Fall 2017 c©2017, Selim Aksoy (Bilkent University) 27 / 29



Learning Undirected Models

I The global factor couples all of the parameters across the
network, preventing us from decomposing the problem and
estimating local groups of parameters separately.

I The global parameter coupling has significant
computational ramifications.

I Even the simple maximum likelihood parameter estimation
with complete data cannot be solved in closed form.
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Learning Undirected Models

I We generally have to resort to iterative methods such as
gradient ascent.

I The good news is that the likelihood objective is concave,
so the methods are guaranteed to converge to the global
optimum.

I The bad news is that each of the steps in the iterative
algorithm requires that we run inference on the network,
making even simple parameter estimation a fairly expensive
process.
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