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Linear Discriminant Functions

I A classifier that uses discriminant functions assigns a
feature vector x to class wi if

gi(x) > gj(x) ∀j 6= i

where gi(x), i = 1, . . . , c, are the discriminant functions for c
classes.

I A discriminant function that is a linear combination of the
components of x is called a linear discriminant function and
can be written as

g(x) = wTx + w0

where w is the weight vector and w0 is the bias (or
threshold weight).
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The Two-Category Case

I For the two-category case, the decision rule can be written
as

Decide

w1 if g(x) > 0

w2 otherwise

I The equation g(x) = 0 defines the decision boundary that
separates points assigned to w1 from points assigned to w2.

I When g(x) is linear, the decision surface is a hyperplane
whose orientation is determined by the normal vector w and
location is determined by the bias w0.
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The Multicategory Case

I There is more than one way to devise multicategory
classifiers with linear discriminant functions.

I For example, we can pose the problem as c two-class
problems, where the i’th problem is solved by a linear
discriminant that separates points assigned to wi from
those not assigned to wi.

I Alternatively, we can use c(c− 1)/2 linear discriminants, one
for every pair of classes.

I Also, we can use c linear discriminants, one for each class,
and assign x to wi if gi(x) > gj(x) for all j 6= i.
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The Multicategory Case

(a) Boundaries separate wi from ¬wi. (b) Boundaries separate wi from wj .

Figure 1: Linear decision boundaries for a four-class problem devised as
four two-class problems (left figure) and six pairwise problems (right figure).
The pink regions have ambiguous category assignments.
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The Multicategory Case

Figure 2: Linear decision boundaries produced by using one linear
discriminant for each class. wi −wj is the normal vector for the decision
boundary that separates the decision region for class wi from class wj .
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Generalized Linear Discriminant Functions

I The linear discriminant function g(x) can be written as

g(x) = w0 +
d∑

i=1

wixi

where w = (w1, . . . ,wd)
T .

I We can obtain the quadratic discriminant function by adding
second-order terms as

g(x) = w0 +
d∑

i=1

wixi +
d∑

i=1

d∑
j=1

wijxixj

which result in more complicated decision boundaries
(hyperquadrics).
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Generalized Linear Discriminant Functions

I Adding higher-order terms gives the generalized linear
discriminant function

g(x) =
d′∑
i=1

aiyi(x) = aTy

where a is a d′-dimensional weight vector and d′ functions
yi(x) are arbitrary functions of x.

I The physical interpretation is that the functions yi(x) map
point x in d-dimensional space to point y in d′-dimensional
space.
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Generalized Linear Discriminant Functions

I Then, the discriminant g(x) = aTy separates points in the
transformed space using a hyperplane passing through the
origin.

I This mapping to a higher dimensional space brings
problems and additional requirements for computation and
data.

I However, certain assumptions can make the problem
tractable.
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Generalized Linear Discriminant Functions

Figure 3: Mapping from R2 to R3 where points (x1, x2)
T in the original space

become (y1, y2, y3)
T = (x21,

√
2x1x2, x

2
2)

T in the new space. The planar
decision boundary in the new space corresponds to a non-linear decision
boundary in the original space.
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Generalized Linear Discriminant Functions

Figure 4: Mapping from R2 to R3 where points (x1, x2)
T in the original space

become (y1, y2, y3)
T = (x1, x2, αx1x2)

T in the new space. The decision
regions R̂1 and R̂2 are separated by a plane in the new space where the
corresponding regions R1 and R2 in the original space are separated by
non-linear boundaries (R1 is also not connected).
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Support Vector Machines

I We have seen that linear discriminant functions are optimal
if the underlying distributions are Gaussians having equal
covariance for each class.

I In the general case, the problem of finding linear
discriminant functions can be formulated as a problem of
optimizing a criterion function.

I Among all hyperplanes separating the data, there exists a
unique one yielding the maximum margin of separation
between the classes.
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Support Vector Machines

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

Figure 5: The margin is defined as the perpendicular distance between the
decision boundary and the closest of the data points (left). Maximizing the
margin leads to a particular choice of decision boundary (right). The location
of this boundary is determined by a subset of the data points, known as the
support vectors, which are indicated by the circles.
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Support Vector Machines

I Given a set of training patterns and class labels as
(x1, y1), . . . , (xn, yn) ∈ Rd × {±1}, the goal is to find a
classifier function f : Rd → {±1} such that f(x) = y will
correctly classify new patterns.

I Support vector machines are based on the class of
hyperplanes

(w · x) + b = 0, w ∈ Rd, b ∈ R

corresponding to decision functions

f(x) = sign((w · x) + b).
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Support Vector Machines

Figure 6: A binary classification problem of separating balls from diamonds.
The optimal hyperplane is orthogonal to the shortest line connecting the
convex hulls of the two classes (dotted), and intersects it half way between
the two classes. There is a weight vector w and a threshold b such that the
points closest to the hyperplane satisfy |(w · xi) + b| = 1 corresponding to
yi((w · xi) + b) ≥ 1. The margin, measured perpendicularly to the
hyperplane, equals 2/‖w‖.
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Support Vector Machines

I To construct the optimal hyperplane, we can define the
following optimization problem:

minimize
1

2
‖w‖2

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . , n.

I This constrained optimization problem is solved using
Lagrange multipliers αi ≥ 0 and the Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

n∑
i=1

αi(yi((w · xi) + b)− 1)

where L has to be minimized w.r.t. the prime variables w

and b, and maximized w.r.t. the dual variables αi.
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Support Vector Machines

I The solution can be obtained using quadratic programming
techniques where the solution vector

w =
n∑

i=1

αi yi xi

is the summation of a subset of the training patterns, called
the support vectors, whose αi are non-zero.

I The support vectors lie on the margin and carry all relevant
information about the classification problem (the remaining
patterns are irrelevant).
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Support Vector Machines

I The value of b can be computed as the solution of

αi(yi((w · xi) + b)− 1) = 0

using any of the support vectors but it is numerically safer to
take the average value of b resulting from all such
equations.

I In many real-world problems there will be no linear
boundary separating the classes and the problem of
searching for an optimal separating hyperplane is
meaningless.

I However, we can extend the above ideas to handle
non-separable data by relaxing the constraints.

CS 551, Fall 2018 c©2018, Selim Aksoy (Bilkent University) 18 / 25



Support Vector Machines

I The new optimization problem becomes:

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi

subject to (w · xi) + b ≥ +1− ξi for yi = +1,

(w · xi) + b ≤ −1 + ξi for yi = −1,

ξi ≥ 0 i = 1, . . . , n

where ξi, i = 1, . . . , n, are called the slack variables and C is a
regularization parameter.

I The term C
∑n

i=1 ξi can be thought of as measuring some amount
of misclassification where lowering the value of C corresponds to
a smaller penalty for misclassification (see references).
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Support Vector Machines

y = 1

y = 0
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Figure 7: Illustration of the slack variables ξi ≥ 0. Data points with circles
around them are support vectors.
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Support Vector Machines

I Both the quadratic programming problem and the final
decision function

f(x) = sign

(
n∑

i=1

αi yi (x · xi) + b

)
depend only on the dot products between patterns.

I We can generalize this result to the non-linear case by
mapping the original input space into some other space F
using a non-linear map Φ : Rd → F and perform the linear
algorithm in the F space which only requires the dot
products

k(x,y) = Φ(x)Φ(y).
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Support Vector Machines

I Even though F may be high-dimensional, a simple kernel
k(x,y) such as the following can be computed efficiently.

Table 1: Common kernel functions.

Polynomial k(x,y) = (x · y)p

Sigmoidal k(x,y) = tanh(κ(x · y) + θ)

Radial basis function k(x,y) = exp(−‖x− y‖2/(2σ2))

I Once a kernel function is chosen, we can substitute Φ(xi)

for each training example xi, and perform the optimal
hyperplane algorithm in F .
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Support Vector Machines

I This results in the non-linear decision function of the form

f(x) = sign

(
n∑

i=1

αi yi k(x,xi) + b

)

where the parameters αi are computed as the solution of
the quadratic programming problem.

I In the original input space, the hyperplane corresponds to a
non-linear decision function whose form is determined by
the kernel.
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Support Vector Machines

I SVMs are quite popular because of their intuitive
formulation using computational learning theory and their
high performances in practical applications.

I However, we must be careful about certain issues such as
the following during implementation.

I Choice of kernel functions: We can use training data to find
the best performing kernel.

I Computational requirements of the quadratic program:
Several algorithms exist for speeding up the optimization
problem (see references).
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Support Vector Machines

I Extension to multiple classes: We can train a separate SVM
for each class, compute the output value using each SVM,
and select the class that assigns the unknown pattern the
furthest into the positive region.

I Converting the output of an SVM to a posterior probability
for post-processing: We can fit a sigmoid model to the
posterior probability P (y = 1|f(x)) as

P (y = 1|f(x)) =
1

1 + exp(a f(x) + b)

where the parameters a and b are learned using maximum
likelihood estimation from a training set.
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