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Bayesian Decision Theory

e Bayesian Decision Theory is a fundamental statistical
approach that quantifies the tradeoffs between various
decisions using probabilities and costs that accompany
such decisions.

e First, we will assume that all probabilities are known.

e Then, we will study the cases where the probabilistic
structure is not completely known.
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Fish Sorting Example Reuvisited

e State of nature is a random variable.

e Define w as the type of fish we observe (state of nature)
where
» w = w; for sea bass
» W = wy for salmon
» P(wy) is the a priori probability that the next fish is
a sea bass

» P(w-) is the a priori probability that the next fish is
a salmon
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Prior Probabilities

e Prior probabilities reflect our knowledge of how likely
each type of fish will appear before we actually see it.

e How can we choose P(w) and P(ws)?
» Set P(wy) = P(wsy) if they are equiprobable (uniform
priors).
» May use different values depending on the fishing
area, time of the year, etc.

e Assume there are no other types of fish

(exclusivity and exhaustivity)
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Making a Decision

e How can we make a decision with only the prior
information?

(wy if P(wy) > P(ws)

wy otherwise

Decide

\

e What is the probability of error for this decision?

P(error) = min{ P(w,), P(w>)}
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Class-conditional Probabilities
e Let's try to improve the decision using the lightness
measurement .
e Let x be a continuous random variable.

e Define p(x|w;) as the class-conditional probability
density (probability of x given that the state of nature
is w; for 7 =1,2).

e p(x|w;) and p(x|wsy) describe the difference in lightness
between populations of sea bass and salmon.
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Class-conditional Probabilities
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Figure 1: Hypothetical class-conditional probability density functions for two classes.
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Posterior Probabilities
e Suppose we know P(w,) and p(z|w,) for j = 1,2, and
measure the lightness of a fish as the value x.

e Define P(wj|lxr) as the a posteriori probability
(probability of the state of nature being w; given the
measurement of feature value x).

e We can use the Bayes formula to convert the prior
probability to the posterior probability

p(z|w;) P(w;)
p(x)

where p(z) = "7 p(a|w;) P(w;).
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Posterior Probabilities

e p(x|w;) is called the likelihood and p(x) is called the

evidence.
Plw |x)
] &

g II{Z'I IHI IIEI II3I Il-ﬁfl | l;x
Figure 2: Posterior probabilities for the particular priors P(w;) = 2/3 and
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Making a Decision

e How can we make a decision after observing the value
of x7

(

wy if P(wq|x) > P(ws|x)

wy otherwise

Decide ¢

\

e Rewriting the rule gives

( e p(z|wy)  Plws)
Decide < wy p(zlwz) ~ P(wy)
(W otherwise
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Probability of Error

e \What is the probability of error for this decision?

P if we decid
P(error|z) = (wy|z) if we decide wo

| P(wz|x) if we decide w;

e \What is the average probability of error?

O

P(error) = / " p(error, z) dz = / P(error|z) p(z) dz

O — 00

e Bayes decision rule minimizes this error because

P(error|x) = min{ P(wi|x), P(ws|x)}
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Bayesian Decision Theory

e How can we generalize to
» more than one feature?
replace the scalar x by the feature vector x
» more than two states of nature?
just a difference in notation
» allowing actions other than just decisions?
allow the possibility of rejection
» different risks in the decision?
define how costly each action is
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Bayesian Decision Theory

o Let {wy,...,w.} be the finite set of ¢ states of nature
(categories).
o Let {vy,...,a,} be the finite set of a possible actions.

o Let \(ay|w,) be the loss incurred for taking action «;
when the state of nature is w;.

e let x be the d-component vector-valued random
variable called the feature vector.
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Bayesian Decision Theory
e p(x|w,) is the class-conditional probability density
function.
e P(w;j) is the prior probability that nature is in state w;.

e [ he posterior probability can be computed as

x|w;) P(w;)
p(x)

Pyl =

where p(x) = >’ p(x|w;) P(w;).
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Conditional Risk

e Suppose we observe x and take action «;.

o If the true state of nature is w;, we incur the loss
Aa|w;).

e [ he expected loss with taking action ¢; Is
R(a;|x) = Z A aw;) P(w;|x)

which i1s also called the conditional risk.

CS 551, Spring 2005 14/45



Minimume-risk Classification

e The general decision rule a(x) tells us which action to
take for observation x.

e \We want to find the decision rule that minimizes the
overall risk

R:/R(&(X)\X)p(x) dx

e Bayes decision rule minimizes the overall risk by selecting
the action «; for which R(ay|x) is minimum.

e [he resulting minimum overall risk Is called the Bayes
risk and is the best performance that can be achieved.
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Two-category Classification

e Define
» a. deciding wq
» (ip. deciding ws
> Aij = Ao |w;)

e Conditional risks can be written as

R(Ozl X) — )\11 P(w1 X) T )\12 P(’UJQ X)
R(Oég X) = )\21 P(”UJl X) T )\22 P(wz X)
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Two-category Classification

e [ he minimum-risk decision rule becomes

f

w1 If ()\21 — All)P(wl‘X) > ()\12 — )\QQ)P(U)Q‘X)

Wy otherwise

Decide ¢

e [his corresponds to deciding wy if

p(x|w) - (A12 — Az2) P(wo)

p(x|wz) = (A1 — A1) P(wy)

=- comparing the likelihood ratio to a threshold that is
independent of the observation x
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Minimume-error-rate Classification

e Actions are decisions on classes («; is deciding w;).

e If action «; is taken and the true state of nature is wyj,
then the decision is correct if : = 5 and in error if 7 # 7.

e \We want to find a decision rule that minimizes the
probability of error.

e Define the zero-one loss function

(O -f.: .
A(&Z’wj) = X I T 1) =1,...,c
1 ifi

(all errors are equally costly)

\
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Minimume-error-rate Classification

e Conditional risk becomes

R(o;|x) = Z)\ a;|lw;i) P(w;|x)

=1 — P(w;|x)

e Minimizing the risk requires maximizing P(w;|x) and
results in the minimum-error decision rule

Decide w; if P(w;|x) > P(w;|x) Vj #1
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Minimume-error-rate Classification
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Figure 3: The likelihood ratio p(x|w;)/p(x|w2). The threshold 6, is computed
using the priors P(w;) = 2/3 and P(ws) = 1/3, and a zero-one loss function. If
we penalize mistakes in classifying wo patterns as w; more than the converse, we

should increase the threshold to 0.
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Discriminant Functions

e A useful way of representing classifiers is through
discriminant functions g¢;(x),1 = 1,...,¢c, where the
classifier assigns a feature vector x to class w; if

gi(x) > gj(x) Vj#i

e For the classifier that minimizes conditional risk

g9i(x) = —R(ay|x)

e For the classifier that minimizes error

gi(x) = P(wi[x)
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Discriminant Functions

e These functions divide the feature space into c
decision regions (R, ..., R.), separated by decision
boundaries.

e Note that the results do not change even if we replace

every ¢g;(x) by f(g;(x)) where f(-) is a monotonically
increasing function (e.g., logarithm).

e This may lead to significant analytical and
computational simplifications.

CS 551, Spring 2005 22 /45



The Gaussian Density

e Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

e Some properties of the Gaussian:

» Analytically tractable

» Completely specified by the 1st and 2nd moments

» Has the maximum entropy of all distributions with a
given mean and variance

» Many processes are asymptotically Gaussian (Central
Limit Theorem)

» Uncorrelatedness implies independence
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Univariate Gaussian

e For x € R:

where
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Univariate Gaussian
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Figure 4: A univariate Gaussian distribution has roughly 95% of its area in the
range |z — pu| < 20.
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Multivariate Gaussian
e For x € R¢:

p(x) = N(u,X)

1 1 Ts—1

where
p = FEx| = /Xp(x) dx

= = Blix = wx- w)"] = [ (x— )(x — ) plo) dx
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Multivariate Gaussian

X

Figure 5: Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean u. The loci of points of constant density are the ellipses for which

(x — u)TE " (x — p) is constant, where the eigenvectors of 3 determine the
direction and the corresponding eigenvalues determine the length of the principal

axes. The quantity 72 = (x — p)TX 7 (x — ) is called the squared Mahalanobis
distance from x to pu.
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Linear Transformations

e Recall that, given x € RY, A € RF y = Alx e R,
if £ ~ N(u,X), then y ~ N(ATpu, A’SA).

e As a special case, the whitening transform
A, = PA 2
where
» ® is the matrix whose columns are the orthonormal
eigenvectors of 3J,
» A is the diagonal matrix of the corresponding
eigenvalues,
gives a covariance matrix equal to the identity matrix 1.
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Discriminant Functions for the Gaussian
Density

e Discriminant functions for minimum-error-rate classification
can be written as

gi(x) = Inp(xjw;) + In P(w;)

o For p(x|w;) = N (p;, X5)

1 d 1
gi(x) = —§(X—Hi)TZ;1(X—Mi)—§ 11127T—§ In| 35| +InP(w;)
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Case 1: X, = o°1
e Discriminant functions are

gi(x) = W;‘-FX + w;p (linear discriminant)

where
1
W; = — ;
o2 H
1
wio = ——5 Mi M + In P(w;)
20

(w;q is the threshold or bias for the i'th category)
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Case 1: X, = o°1

e Decision boundaries are the hyperplanes g;(x) = g,(x),
and can be written as

w!(x — x¢) =0

where
W = H; — Iy
1 0'2 P(wz)
Xo = 5 (M + H;) In (s — 1)
2 s = llF T Pwy) !

e Hyperplane separating R; and R, passes through the
point xXg and is orthogonal to the vector w.
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Plusj)=7 Plus,)=.3

Figure 6: If the covariance matrices of two distributions are equal and proportional
to the identity matrix, then the distributions are spherical in d dimensions, and the
boundary is a generalized hyperplane of d — 1 dimensions, perpendicular to the line
separating the means. The decision boundary shifts as the priors are changed.
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Case 1: X, = o°1

e Special case when P(w;) are thesamefori =1,...,cis
the minimum-distance classifier that uses the decision
rule

assign X to w;+ where " = arg Zi]fllmc |x — 1]
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Case 2: X, =X

e Discriminant functions are
gi(x) = W,,;TX + w;p  (linear discriminant)

where
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Case 2: X, =X

e Decision boundaries can be written as
w!(x —x¢) =0
where

w=3"(p; — ;)
T In(P(w;)/P(w;))
0 Q(Hz + 1) (p; — uj)TZ_l(Mi — ;)

(s — Nj)

e Hyperplane passes through xg but Is not necessarily
orthogonal to the line between the means.
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Figure 7: Probability densities with equal but asymmetric Gaussian distributions.
The decision hyperplanes are not necessarily perpendicular to the line connecting

the means.
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Case 3: X; = arbitrary

e Discriminant functions are

g;(x) =x'W;x+w; x+wj (quadratic discriminant)

where
1
W, = —— 2;1
2
w;, = 3, p;
1 1
Wi = -5 uz-TE,;lu,,; — §1n 135 + In P(w;)

e Decision boundaries are hyperquadrics.
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Case 3:
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Case 3: Y., = arbitrar
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Figure 9: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics.
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Error Probabilities and Integrals

e [or the two-category case

P(error) = P(x € Ry, w1) + P(x € Ry, ws)
— P X = R2|w1) (wl) + P(X - Rl‘wg)P(”UJQ)

/ (x|w1) P wl)dXJr/Rlp(X\wz)P(%) dx
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Error Probabilities and Integrals

e For the multicategory case

P(error) =1 — P(correct)

= 1—iP(X€R¢,w@-)

1=1

—1— Z P(x € R;w;)P(w;)

—1— 2 /R p(x|wi) P(w) dx
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Error Probabilities and Integrals
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Figure 10: Components of the probability of error for equal priors and the non-
optimal decision point x*. The optimal point x5 minimizes the total shaded area
and gives the Bayes error rate.
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Receiver Operating Characteristics

e Consider the two-category case and define
» wy: target Is present
» Woy: target I1s not present

Table 1: Confusion matrix.

Assigned

(Y] (V05)
wy | correct detection | mis-detection
Woy false alarm correct rejection

True
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Receiver Operating Characteristics

e |f we use a parameter hit
(e.g., a threshold) in our |
decision, the plot of these
rates for different values
of the parameter is called
the receiver operating
characteristic (ROC)
curve.

Pz »x*kk e m,)

false alarm

P(x > x*lx & ) !

Figure 11: Example receiver operating
characteristic (ROC) curves for different
settings of the system.
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Summary

e o minimize the overall risk, choose the action that
minimizes the conditional risk R(«|x).

e To minimize the probability of error in a classification
oroblem, choose the class that maximizes the posterior
orobability P(w;|x).

e If there are different penalties for misclassifying patterns
from different classes, the posteriors must be weighted
according to such penalties before taking action.

e Do not forget that these decisions are the optimal ones
under the assumption that the “true” values of the
probabilities are known.
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