Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.
- Then, we will study the cases where the probabilistic structure is not completely known.

Fish Sorting Example Revisited

- State of nature is a random variable.
- ullet Define w as the type of fish we observe (state of nature) where
 - $ightharpoonup w = w_1$ for sea bass
 - $ightharpoonup w = w_2$ for salmon
 - ▶ $P(w_1)$ is the *a priori probability* that the next fish is a sea bass
 - $ightharpoonup P(w_2)$ is the a priori probability that the next fish is a salmon

CS 551, Spring 2005 2/45

Prior Probabilities

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - ► May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$P(w_1) + P(w_2) = 1$$

(exclusivity and exhaustivity)

Making a Decision

 How can we make a decision with only the prior information?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$$

What is the probability of error for this decision?

$$P(error) = \min\{P(w_1), P(w_2)\}\$$

CS 551, Spring 2005 4/45

Class-conditional Probabilities

- Let's try to improve the decision using the lightness measurement x.
- Let x be a continuous random variable.
- Define $p(x|w_j)$ as the class-conditional probability density (probability of x given that the state of nature is w_j for j=1,2).
- $p(x|w_1)$ and $p(x|w_2)$ describe the difference in lightness between populations of sea bass and salmon.

CS 551, Spring 2005 5/45

Class-conditional Probabilities

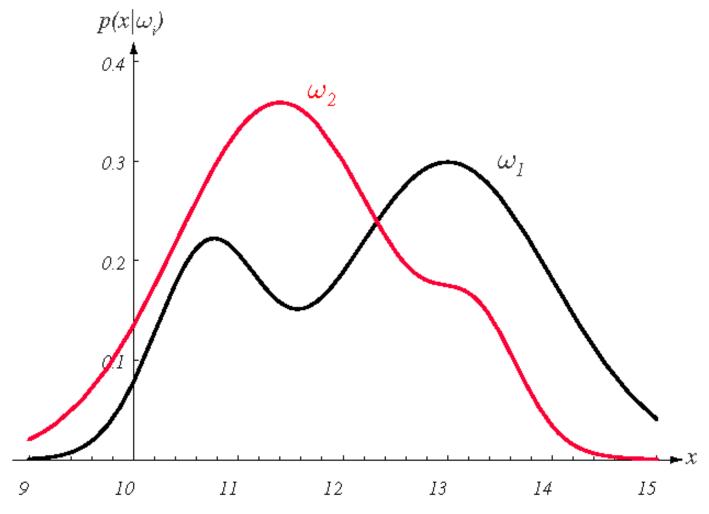


Figure 1: Hypothetical class-conditional probability density functions for two classes.

Posterior Probabilities

- Suppose we know $P(w_j)$ and $p(x|w_j)$ for j=1,2, and measure the lightness of a fish as the value x.
- Define $P(w_j|x)$ as the *a posteriori probability* (probability of the state of nature being w_j given the measurement of feature value x).
- We can use the Bayes formula to convert the prior probability to the posterior probability

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

where $p(x) = \sum_{j=1}^{2} p(x|w_{j})P(w_{j})$.

CS 551, Spring 2005 7/45

Posterior Probabilities

• $p(x|w_j)$ is called the *likelihood* and p(x) is called the *evidence*.

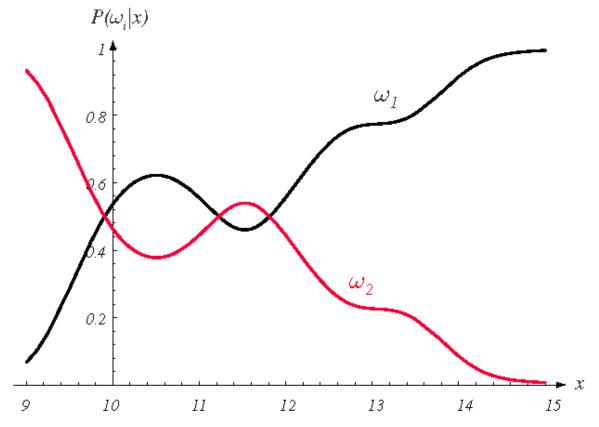


Figure 2: Posterior probabilities for the particular priors $P(w_1)=2/3$ and $P(w_2)=1/3$.

Making a Decision

 How can we make a decision after observing the value of x?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1|x) > P(w_2|x) \\ w_2 & \text{otherwise} \end{cases}$$

Rewriting the rule gives

Decide
$$\begin{cases} w_1 & \text{if } \frac{p(x|w_1)}{p(x|w_2)} > \frac{P(w_2)}{P(w_1)} \\ w_2 & \text{otherwise} \end{cases}$$

CS 551, Spring 2005 9/45

Probability of Error

What is the probability of error for this decision?

$$P(error|x) = egin{cases} P(w_1|x) & ext{if we decide } w_2 \ P(w_2|x) & ext{if we decide } w_1 \end{cases}$$

What is the average probability of error?

$$P(error) = \int_{-\infty}^{\infty} p(error, x) dx = \int_{-\infty}^{\infty} P(error|x) p(x) dx$$

• Bayes decision rule minimizes this error because

$$P(error|x) = \min\{P(w_1|x), P(w_2|x)\}$$

- How can we generalize to
 - more than one feature?
 - replace the scalar x by the feature vector \mathbf{x}
 - more than two states of nature?
 - just a difference in notation
 - allowing actions other than just decisions?
 - allow the possibility of rejection
 - different risks in the decision?
 - define how costly each action is

CS 551, Spring 2005 11/45

- Let $\{w_1, \ldots, w_c\}$ be the finite set of c states of nature (categories).
- Let $\{\alpha_1, \ldots, \alpha_a\}$ be the finite set of a possible *actions*.
- Let $\lambda(\alpha_i|w_j)$ be the *loss* incurred for taking action α_i when the state of nature is w_j .
- Let \mathbf{x} be the d-component vector-valued random variable called the *feature vector*.

- $p(\mathbf{x}|w_j)$ is the class-conditional probability density function.
- ullet $P(w_j)$ is the prior probability that nature is in state w_j .
- The posterior probability can be computed as

$$P(w_j|\mathbf{x}) = \frac{p(\mathbf{x}|w_j)P(w_j)}{p(\mathbf{x})}$$

where
$$p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x}|w_j)P(w_j)$$
.

Conditional Risk

- Suppose we observe ${\bf x}$ and take action α_i .
- If the true state of nature is w_j , we incur the loss $\lambda(\alpha_i|w_j)$.
- The expected loss with taking action α_i is

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|w_j)P(w_j|\mathbf{x})$$

which is also called the *conditional risk*.

CS 551, Spring 2005 14/45

Minimum-risk Classification

- The general *decision rule* $\alpha(\mathbf{x})$ tells us which action to take for observation \mathbf{x} .
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

- Bayes decision rule minimizes the overall risk by selecting the action α_i for which $R(\alpha_i|\mathbf{x})$ is minimum.
- The resulting minimum overall risk is called the *Bayes* risk and is the best performance that can be achieved.

Two-category Classification

- Define
 - $ightharpoonup \alpha_1$: deciding w_1
 - $ightharpoonup lpha_2$: deciding w_2
 - $\lambda_{ij} = \lambda(\alpha_i|w_j)$
- Conditional risks can be written as

$$R(\alpha_1|\mathbf{x}) = \lambda_{11} P(w_1|\mathbf{x}) + \lambda_{12} P(w_2|\mathbf{x})$$

$$R(\alpha_2|\mathbf{x}) = \lambda_{21} P(w_1|\mathbf{x}) + \lambda_{22} P(w_2|\mathbf{x})$$

Two-category Classification

• The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21}-\lambda_{11})P(w_1|\mathbf{x})>(\lambda_{12}-\lambda_{22})P(w_2|\mathbf{x})\\ w_2 & \text{otherwise} \end{cases}$$

ullet This corresponds to deciding w_1 if

$$\frac{p(\mathbf{x}|w_1)}{p(\mathbf{x}|w_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(w_2)}{P(w_1)}$$

 \Rightarrow comparing the *likelihood ratio* to a threshold that is independent of the observation ${\bf x}$

CS 551, Spring 2005 17/45

Minimum-error-rate Classification

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j , then the decision is correct if i=j and in error if $i\neq j$.
- We want to find a decision rule that minimizes the probability of error.
- Define the zero-one loss function

$$\lambda(\alpha_i|w_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases} \qquad i, j = 1, \dots, c$$

(all errors are equally costly)

Minimum-error-rate Classification

Conditional risk becomes

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|w_j) P(w_j|\mathbf{x})$$
$$= \sum_{j\neq i} P(w_j|\mathbf{x})$$
$$= 1 - P(w_i|\mathbf{x})$$

• Minimizing the risk requires maximizing $P(w_i|\mathbf{x})$ and results in the *minimum-error decision rule*

Decide
$$w_i$$
 if $P(w_i|\mathbf{x}) > P(w_i|\mathbf{x}) \quad \forall j \neq i$

Minimum-error-rate Classification

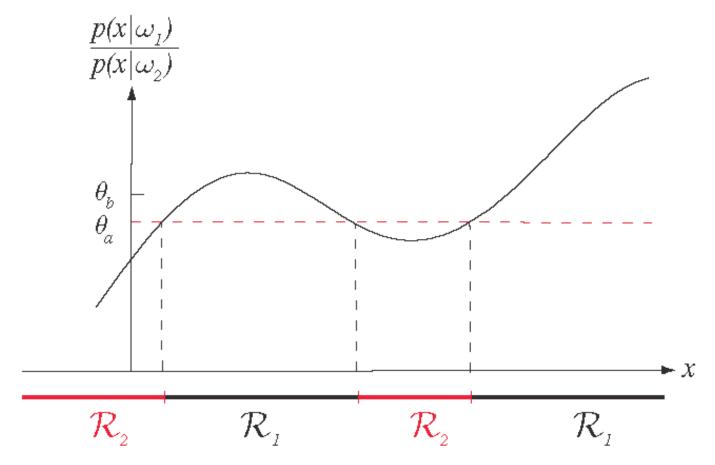


Figure 3: The likelihood ratio $p(\mathbf{x}|w_1)/p(\mathbf{x}|w_2)$. The threshold θ_a is computed using the priors $P(w_1) = 2/3$ and $P(w_2) = 1/3$, and a zero-one loss function. If we penalize mistakes in classifying w_2 patterns as w_1 more than the converse, we should increase the threshold to θ_b .

CS 551, Spring 2005 20/45

Discriminant Functions

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x}), i = 1, \dots, c$, where the classifier assigns a feature vector \mathbf{x} to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

• For the classifier that minimizes conditional risk

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

For the classifier that minimizes error

$$g_i(\mathbf{x}) = P(w_i|\mathbf{x})$$

CS 551, Spring 2005 21/45

Discriminant Functions

- These functions divide the feature space into c decision regions $(\mathcal{R}_1, \ldots, \mathcal{R}_c)$, separated by decision boundaries.
- Note that the results do not change even if we replace every $g_i(\mathbf{x})$ by $f(g_i(\mathbf{x}))$ where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).
- This may lead to significant analytical and computational simplifications.

CS 551, Spring 2005 22/45

The Gaussian Density

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable
 - Completely specified by the 1st and 2nd moments
 - Has the maximum entropy of all distributions with a given mean and variance
 - Many processes are asymptotically Gaussian (Central Limit Theorem)
 - Uncorrelatedness implies independence

Univariate Gaussian

• For $x \in \mathbb{R}$:

$$p(x) = N(\mu, \sigma^2)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right]$$

where

$$\mu = E[x] = \int_{-\infty}^{\infty} x p(x) dx$$

$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$$

CS 551, Spring 2005 24/45

Univariate Gaussian

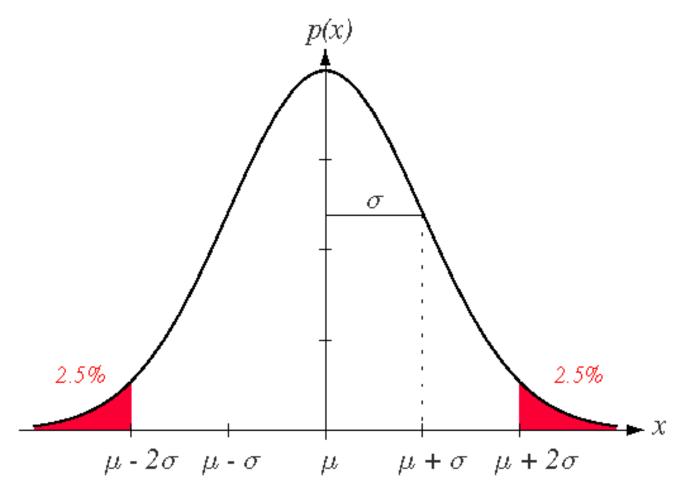


Figure 4: A univariate Gaussian distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$.

CS 551, Spring 2005 25/45

Multivariate Gaussian

• For $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

where

$$\boldsymbol{\mu} = E[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$

$$\boldsymbol{\Sigma} = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T p(\mathbf{x}) d\mathbf{x}$$

CS 551, Spring 2005 26/45

Multivariate Gaussian

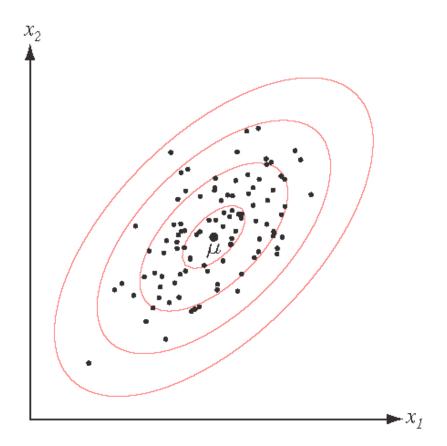


Figure 5: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean μ . The loci of points of constant density are the ellipses for which $(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$ is constant, where the eigenvectors of $\boldsymbol{\Sigma}$ determine the direction and the corresponding eigenvalues determine the length of the principal axes. The quantity $r^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$ is called the squared *Mahalanobis distance* from \mathbf{x} to $\boldsymbol{\mu}$.

CS 551, Spring 2005 27/45

Linear Transformations

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $y \sim N(\mathbf{A}^T \boldsymbol{\mu}, \mathbf{A}^T \boldsymbol{\Sigma} \mathbf{A})$.
- As a special case, the whitening transform

$$\mathbf{A}_{\mathbf{w}} = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$$

where

- lacktriangle is the matrix whose columns are the orthonormal eigenvectors of Σ ,
- $oldsymbol{\Lambda}$ is the diagonal matrix of the corresponding eigenvalues,

gives a covariance matrix equal to the identity matrix ${f I}$.

CS 551, Spring 2005 28/45

Discriminant Functions for the Gaussian Density

 Discriminant functions for minimum-error-rate classification can be written as

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i)$$

• For $p(\mathbf{x}|w_i) = N(\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i^{-1}} (\mathbf{x} - \boldsymbol{\mu_i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma_i}| + \ln P(w_i)$$

Case 1:
$$\Sigma_i = \sigma^2 \mathbf{I}$$

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 (linear discriminant)

where

$$\mathbf{w}_{i} = \frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2\sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i} + \ln P(w_{i})$$

(w_{i0} is the threshold or bias for the i'th category)

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

• Decision boundaries are the hyperplanes $g_i(\mathbf{x}) = g_j(\mathbf{x})$, and can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

where

$$\mathbf{w} = \boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}$$

$$\mathbf{x}_{0} = \frac{1}{2}(\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\sigma^{2}}{\|\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}\|^{2}} \ln \frac{P(w_{i})}{P(w_{j})} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})$$

• Hyperplane separating \mathcal{R}_i and \mathcal{R}_j passes through the point $\mathbf{x_0}$ and is orthogonal to the vector \mathbf{w} .

CS 551, Spring 2005 31/45

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

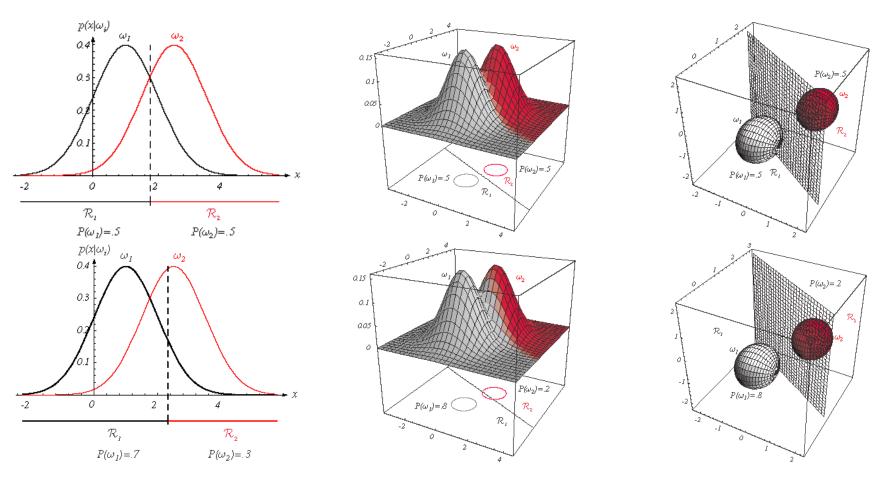


Figure 6: If the covariance matrices of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of d-1 dimensions, perpendicular to the line separating the means. The decision boundary shifts as the priors are changed.

CS 551, Spring 2005 32/45

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

• Special case when $P(w_i)$ are the same for $i=1,\ldots,c$ is the *minimum-distance classifier* that uses the decision rule

assign
$$\mathbf{x}$$
 to w_{i^*} where $i^* = \arg\min_{i=1,...,c} \|\mathbf{x} - \boldsymbol{\mu_i}\|$

Case 2: $\Sigma_i = \Sigma$

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 (linear discriminant)

where

$$\mathbf{w}_{i} = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{i}$$
 $w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{i} + \ln P(w_{i})$

CS 551, Spring 2005 34/45

Case 2: $\Sigma_i = \Sigma$

Decision boundaries can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

where

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$

$$\mathbf{x}_0 = \frac{1}{2}(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\ln(P(w_i)/P(w_j))}{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^T \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$

ullet Hyperplane passes through ${f x}_0$ but is not necessarily orthogonal to the line between the means.

CS 551, Spring 2005 35/45

Case 2: $\Sigma_i = \Sigma$

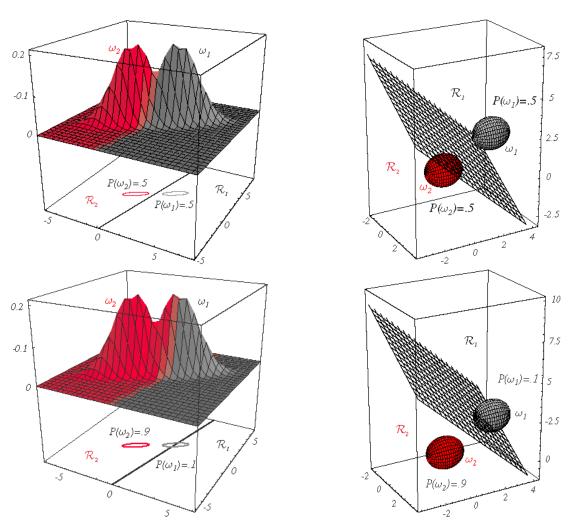


Figure 7: Probability densities with equal but asymmetric Gaussian distributions. The decision hyperplanes are not necessarily perpendicular to the line connecting the means.

CS 551, Spring 2005 36/45

Case 3: Σ_i = arbitrary

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 (quadratic discriminant)

where

$$\mathbf{W}_{i} = -\frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1}$$

$$\mathbf{w}_{i} = \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{i}| + \ln P(w_{i})$$

Decision boundaries are hyperquadrics.

CS 551, Spring 2005 37/45

Case 3: Σ_i = arbitrary

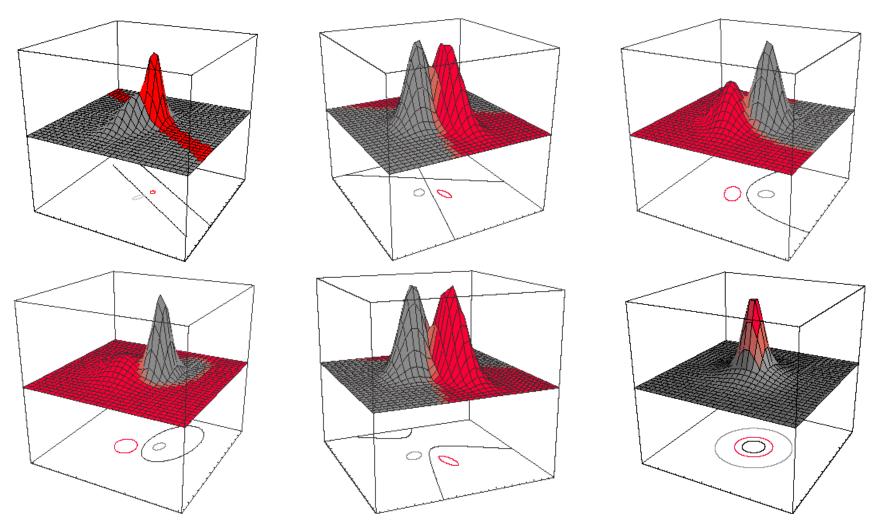


Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

CS 551, Spring 2005 38/45

Case 3: Σ_i = arbitrary

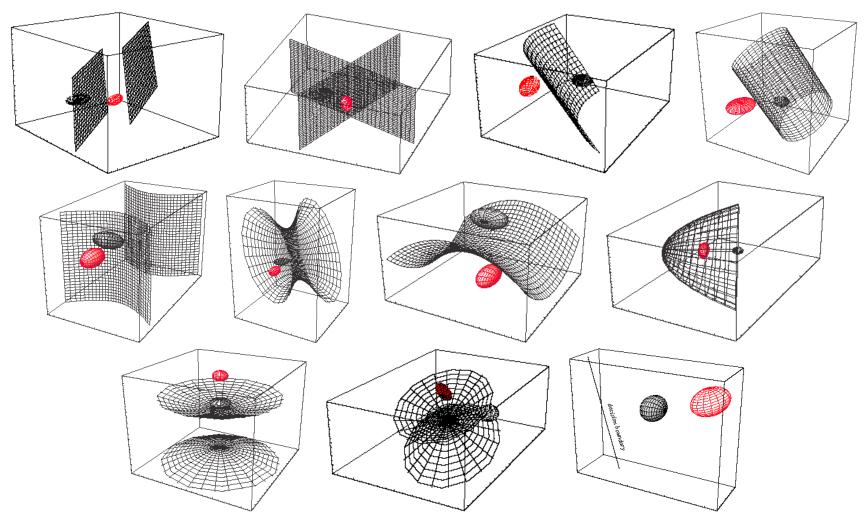


Figure 9: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

CS 551, Spring 2005 39/45

Error Probabilities and Integrals

For the two-category case

$$P(error) = P(\mathbf{x} \in \mathcal{R}_2, w_1) + P(\mathbf{x} \in \mathcal{R}_1, w_2)$$

$$= P(\mathbf{x} \in \mathcal{R}_2 | w_1) P(w_1) + P(\mathbf{x} \in \mathcal{R}_1 | w_2) P(w_2)$$

$$= \int_{\mathcal{R}_2} p(\mathbf{x} | w_1) P(w_1) d\mathbf{x} + \int_{\mathcal{R}_1} p(\mathbf{x} | w_2) P(w_2) d\mathbf{x}$$

CS 551, Spring 2005 40/45

Error Probabilities and Integrals

For the multicategory case

$$P(error) = 1 - P(correct)$$

$$= 1 - \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i, w_i)$$

$$= 1 - \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i | w_i) P(w_i)$$

$$= 1 - \sum_{i=1}^{c} \int_{\mathcal{R}_i} p(\mathbf{x} | w_i) P(w_i) d\mathbf{x}$$

CS 551, Spring 2005 41/45

Error Probabilities and Integrals

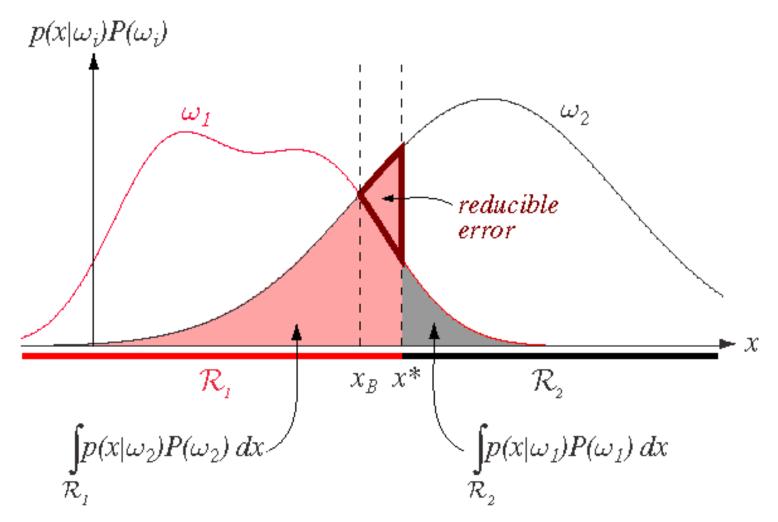


Figure 10: Components of the probability of error for equal priors and the non-optimal decision point x^* . The optimal point x_B minimizes the total shaded area and gives the Bayes error rate.

CS 551, Spring 2005 42/45

Receiver Operating Characteristics

- Consider the two-category case and define
 - $\blacktriangleright w_1$: target is present
 - $\blacktriangleright w_2$: target is not present

Table 1: Confusion matrix.

		Assigned	
		w_1	w_2
True	w_1	correct detection	mis-detection
	w_2	false alarm	correct rejection

CS 551, Spring 2005 43/45

Receiver Operating Characteristics

• If we use a parameter (e.g., a threshold) in our decision, the plot of these rates for different values of the parameter is called the *receiver operating* characteristic (ROC) curve.

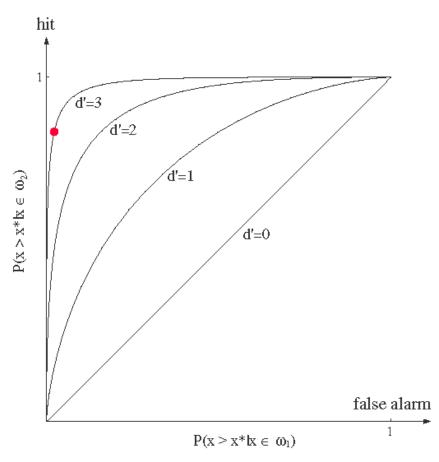


Figure 11: Example receiver operating characteristic (ROC) curves for different settings of the system.

CS 551, Spring 2005 44/45

Summary

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|\mathbf{x})$.
- To minimize the probability of error in a classification problem, choose the class that maximizes the posterior probability $P(w_j|\mathbf{x})$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.
- Do not forget that these decisions are the optimal ones under the assumption that the "true" values of the probabilities are known.

CS 551, Spring 2005 45/45