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Bayesian Decision Theory

• Bayesian Decision Theory is a fundamental statistical

approach that quantifies the tradeoffs between various

decisions using probabilities and costs that accompany

such decisions.

• First, we will assume that all probabilities are known.

• Then, we will study the cases where the probabilistic

structure is not completely known.
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Fish Sorting Example Revisited

• State of nature is a random variable.

• Define w as the type of fish we observe (state of nature)

where

I w = w1 for sea bass

I w = w2 for salmon

I P (w1) is the a priori probability that the next fish is

a sea bass

I P (w2) is the a priori probability that the next fish is

a salmon
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Prior Probabilities

• Prior probabilities reflect our knowledge of how likely

each type of fish will appear before we actually see it.

• How can we choose P (w1) and P (w2)?
I Set P (w1) = P (w2) if they are equiprobable (uniform

priors).

I May use different values depending on the fishing

area, time of the year, etc.

• Assume there are no other types of fish

P (w1) + P (w2) = 1

(exclusivity and exhaustivity)
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Making a Decision

• How can we make a decision with only the prior

information?

Decide

{
w1 if P (w1) > P (w2)

w2 otherwise

• What is the probability of error for this decision?

P (error) = min{P (w1), P (w2)}
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Class-conditional Probabilities

• Let’s try to improve the decision using the lightness

measurement x.

• Let x be a continuous random variable.

• Define p(x|wj) as the class-conditional probability

density (probability of x given that the state of nature

is wj for j = 1, 2).

• p(x|w1) and p(x|w2) describe the difference in lightness

between populations of sea bass and salmon.
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Class-conditional Probabilities

Figure 1: Hypothetical class-conditional probability density functions for two classes.
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Posterior Probabilities

• Suppose we know P (wj) and p(x|wj) for j = 1, 2, and

measure the lightness of a fish as the value x.

• Define P (wj|x) as the a posteriori probability

(probability of the state of nature being wj given the

measurement of feature value x).

• We can use the Bayes formula to convert the prior

probability to the posterior probability

P (wj|x) =
p(x|wj)P (wj)

p(x)

where p(x) =
∑2

j=1 p(x|wj)P (wj).
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Posterior Probabilities

• p(x|wj) is called the likelihood and p(x) is called the

evidence.

Figure 2: Posterior probabilities for the particular priors P (w1) = 2/3 and
P (w2) = 1/3.
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Making a Decision

• How can we make a decision after observing the value

of x?

Decide

{
w1 if P (w1|x) > P (w2|x)

w2 otherwise

• Rewriting the rule gives

Decide

{
w1 if p(x|w1)

p(x|w2) > P (w2)
P (w1)

w2 otherwise
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Probability of Error

• What is the probability of error for this decision?

P (error |x) =

{
P (w1|x) if we decide w2

P (w2|x) if we decide w1

• What is the average probability of error?

P (error) =
∫ ∞

−∞
p(error , x) dx =

∫ ∞

−∞
P (error |x) p(x) dx

• Bayes decision rule minimizes this error because

P (error |x) = min{P (w1|x), P (w2|x)}
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Bayesian Decision Theory

• How can we generalize to

I more than one feature?

– replace the scalar x by the feature vector x
I more than two states of nature?

– just a difference in notation

I allowing actions other than just decisions?

– allow the possibility of rejection

I different risks in the decision?

– define how costly each action is
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Bayesian Decision Theory

• Let {w1, . . . , wc} be the finite set of c states of nature

(categories).

• Let {α1, . . . , αa} be the finite set of a possible actions.

• Let λ(αi|wj) be the loss incurred for taking action αi

when the state of nature is wj.

• Let x be the d-component vector-valued random

variable called the feature vector .
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Bayesian Decision Theory

• p(x|wj) is the class-conditional probability density

function.

• P (wj) is the prior probability that nature is in state wj.

• The posterior probability can be computed as

P (wj|x) =
p(x|wj)P (wj)

p(x)

where p(x) =
∑c

j=1 p(x|wj)P (wj).
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Conditional Risk

• Suppose we observe x and take action αi.

• If the true state of nature is wj, we incur the loss

λ(αi|wj).

• The expected loss with taking action αi is

R(αi|x) =
c∑

j=1

λ(αi|wj)P (wj|x)

which is also called the conditional risk.
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Minimum-risk Classification

• The general decision rule α(x) tells us which action to

take for observation x.

• We want to find the decision rule that minimizes the

overall risk

R =
∫

R(α(x)|x) p(x) dx

• Bayes decision rule minimizes the overall risk by selecting

the action αi for which R(αi|x) is minimum.

• The resulting minimum overall risk is called the Bayes

risk and is the best performance that can be achieved.
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Two-category Classification

• Define

I α1: deciding w1

I α2: deciding w2

I λij = λ(αi|wj)

• Conditional risks can be written as

R(α1|x) = λ11 P (w1|x) + λ12 P (w2|x)

R(α2|x) = λ21 P (w1|x) + λ22 P (w2|x)
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Two-category Classification

• The minimum-risk decision rule becomes

Decide

{
w1 if (λ21 − λ11)P (w1|x) > (λ12 − λ22)P (w2|x)

w2 otherwise

• This corresponds to deciding w1 if

p(x|w1)
p(x|w2)

>
(λ12 − λ22)
(λ21 − λ11)

P (w2)
P (w1)

⇒ comparing the likelihood ratio to a threshold that is

independent of the observation x
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Minimum-error-rate Classification

• Actions are decisions on classes (αi is deciding wi).

• If action αi is taken and the true state of nature is wj,

then the decision is correct if i = j and in error if i 6= j.

• We want to find a decision rule that minimizes the

probability of error.

• Define the zero-one loss function

λ(αi|wj) =

{
0 if i = j

1 if i 6= j
i, j = 1, . . . , c

(all errors are equally costly)
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Minimum-error-rate Classification

• Conditional risk becomes

R(αi|x) =
c∑

j=1

λ(αi|wj) P (wj|x)

=
∑
j 6=i

P (wj|x)

= 1− P (wi|x)

• Minimizing the risk requires maximizing P (wi|x) and

results in the minimum-error decision rule

Decide wi if P (wi|x) > P (wj|x) ∀j 6= i
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Minimum-error-rate Classification

Figure 3: The likelihood ratio p(x|w1)/p(x|w2). The threshold θa is computed
using the priors P (w1) = 2/3 and P (w2) = 1/3, and a zero-one loss function. If
we penalize mistakes in classifying w2 patterns as w1 more than the converse, we
should increase the threshold to θb.
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Discriminant Functions

• A useful way of representing classifiers is through

discriminant functions gi(x), i = 1, . . . , c, where the

classifier assigns a feature vector x to class wi if

gi(x) > gj(x) ∀j 6= i

• For the classifier that minimizes conditional risk

gi(x) = −R(αi|x)

• For the classifier that minimizes error

gi(x) = P (wi|x)
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Discriminant Functions

• These functions divide the feature space into c

decision regions (R1, . . . , Rc), separated by decision

boundaries.

• Note that the results do not change even if we replace

every gi(x) by f(gi(x)) where f(·) is a monotonically

increasing function (e.g., logarithm).

• This may lead to significant analytical and

computational simplifications.
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The Gaussian Density

• Gaussian can be considered as a model where the feature

vectors for a given class are continuous-valued, randomly

corrupted versions of a single typical or prototype vector.

• Some properties of the Gaussian:

I Analytically tractable

I Completely specified by the 1st and 2nd moments

I Has the maximum entropy of all distributions with a

given mean and variance

I Many processes are asymptotically Gaussian (Central

Limit Theorem)

I Uncorrelatedness implies independence
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Univariate Gaussian

• For x ∈ R:

p(x) = N(µ, σ2)

=
1√
2πσ

exp

[
−1

2

(
x− µ

σ

)2
]

where

µ = E[x] =
∫ ∞

−∞
x p(x) dx

σ2 = E[(x− µ)2] =
∫ ∞

−∞
(x− µ)2 p(x) dx
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Univariate Gaussian

Figure 4: A univariate Gaussian distribution has roughly 95% of its area in the
range |x− µ| ≤ 2σ.
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Multivariate Gaussian

• For x ∈ Rd:

p(x) = N(µ,Σ)

=
1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
where

µ = E[x] =
∫

x p(x) dx

Σ = E[(x− µ)(x− µ)T ] =
∫

(x− µ)(x− µ)T p(x) dx
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Multivariate Gaussian

Figure 5: Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean µ. The loci of points of constant density are the ellipses for which
(x − µ)TΣ−1(x − µ) is constant, where the eigenvectors of Σ determine the
direction and the corresponding eigenvalues determine the length of the principal
axes. The quantity r2 = (x − µ)TΣ−1(x − µ) is called the squared Mahalanobis
distance from x to µ.
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Linear Transformations

• Recall that, given x ∈ Rd, A ∈ Rd×k, y = ATx ∈ Rk,

if x ∼ N(µ,Σ), then y ∼ N(ATµ,ATΣA).

• As a special case, the whitening transform

Aw = ΦΛ−1/2

where

I Φ is the matrix whose columns are the orthonormal

eigenvectors of Σ,

I Λ is the diagonal matrix of the corresponding

eigenvalues,

gives a covariance matrix equal to the identity matrix I.
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Discriminant Functions for the Gaussian
Density

• Discriminant functions for minimum-error-rate classification

can be written as

gi(x) = ln p(x|wi) + lnP (wi)

• For p(x|wi) = N(µi,Σi)

gi(x)=−1
2
(x−µi)

TΣ−1
i (x−µi)−

d

2
ln2π−1

2
ln|Σi|+lnP (wi)
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Case 1: Σi = σ2I

• Discriminant functions are

gi(x) = wT
i x + wi0 (linear discriminant)

where

wi =
1
σ2 µi

wi0 = − 1
2σ2 µT

i µi + lnP (wi)

(wi0 is the threshold or bias for the i’th category)
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Case 1: Σi = σ2I

• Decision boundaries are the hyperplanes gi(x) = gj(x),
and can be written as

wT(x− x0) = 0

where

w = µi − µj

x0 =
1
2
(µi + µj)−

σ2

‖µi − µj‖2 ln
P (wi)
P (wj)

(µi − µj)

• Hyperplane separating Ri and Rj passes through the

point x0 and is orthogonal to the vector w.
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Case 1: Σi = σ2I

Figure 6: If the covariance matrices of two distributions are equal and proportional
to the identity matrix, then the distributions are spherical in d dimensions, and the
boundary is a generalized hyperplane of d− 1 dimensions, perpendicular to the line
separating the means. The decision boundary shifts as the priors are changed.
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Case 1: Σi = σ2I

• Special case when P (wi) are the same for i = 1, . . . , c is

the minimum-distance classifier that uses the decision

rule

assign x to wi∗ where i∗ = arg min
i=1,...,c

‖x− µi‖
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Case 2: Σi = Σ

• Discriminant functions are

gi(x) = wT
i x + wi0 (linear discriminant)

where

wi = Σ−1 µi

wi0 = −1
2

µT
i Σ

−1µi + lnP (wi)
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Case 2: Σi = Σ

• Decision boundaries can be written as

wT(x− x0) = 0

where

w = Σ−1(µi − µj)

x0 =
1
2
(µi + µj)−

ln(P (wi)/P (wj))
(µi − µj)TΣ−1(µi − µj)

(µi − µj)

• Hyperplane passes through x0 but is not necessarily

orthogonal to the line between the means.
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Case 2: Σi = Σ

Figure 7: Probability densities with equal but asymmetric Gaussian distributions.
The decision hyperplanes are not necessarily perpendicular to the line connecting
the means.
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Case 3: Σi = arbitrary

• Discriminant functions are

gi(x) = xTWix+wT
i x+wi0 (quadratic discriminant)

where

Wi = −1
2
Σ−1

i

wi = Σ−1
i µi

wi0 = −1
2

µT
i Σ

−1
i µi −

1
2

ln |Σi|+ lnP (wi)

• Decision boundaries are hyperquadrics.
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Case 3: Σi = arbitrary

Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics.
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Case 3: Σi = arbitrary

Figure 9: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics.
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Error Probabilities and Integrals

• For the two-category case

P (error) = P (x ∈ R2, w1) + P (x ∈ R1, w2)

= P (x ∈ R2|w1)P (w1) + P (x ∈ R1|w2)P (w2)

=
∫
R2

p(x|w1) P (w1) dx +
∫
R1

p(x|w2) P (w2) dx
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Error Probabilities and Integrals

• For the multicategory case

P (error) = 1− P (correct)

= 1−
c∑

i=1

P (x ∈ Ri, wi)

= 1−
c∑

i=1

P (x ∈ Ri|wi)P (wi)

= 1−
c∑

i=1

∫
Ri

p(x|wi) P (wi) dx
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Error Probabilities and Integrals

Figure 10: Components of the probability of error for equal priors and the non-
optimal decision point x∗. The optimal point xB minimizes the total shaded area
and gives the Bayes error rate.
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Receiver Operating Characteristics

• Consider the two-category case and define

I w1: target is present

I w2: target is not present

Table 1: Confusion matrix .

Assigned

w1 w2

True
w1 correct detection mis-detection

w2 false alarm correct rejection
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Receiver Operating Characteristics

• If we use a parameter

(e.g., a threshold) in our

decision, the plot of these

rates for different values

of the parameter is called

the receiver operating

characteristic (ROC)

curve.

Figure 11: Example receiver operating
characteristic (ROC) curves for different
settings of the system.
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Summary

• To minimize the overall risk, choose the action that

minimizes the conditional risk R(α|x).

• To minimize the probability of error in a classification

problem, choose the class that maximizes the posterior

probability P (wj|x).

• If there are different penalties for misclassifying patterns

from different classes, the posteriors must be weighted

according to such penalties before taking action.

• Do not forget that these decisions are the optimal ones

under the assumption that the “true” values of the

probabilities are known.
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