
Unsupervised Learning and
Clustering

Selim Aksoy

Bilkent University

Department of Computer Engineering

saksoy@cs.bilkent.edu.tr

CS 551, Spring 2005

Introduction

• Until now we have assumed that the training examples were labeled

by their class membership.

• Procedures that use labeled samples are said to be supervised .

• In this chapter, we will study clustering as an unsupervised

procedure that uses unlabeled samples.

• Unsupervised procedures are used for several reasons:

I Collecting and labeling a large set of sample patterns can be

costly.

I One can train with large amount of unlabeled data, and then

use supervision to label the groupings found.

I Unsupervised methods can be used for feature extraction.

I Exploratory data analysis can provide insight into the nature or

structure of the data.

CS 551, Spring 2005 1/38

Data Description

• Assume that we have a set of unlabeled multi-

dimensional patterns.

• One way of describing this set of patterns is to compute

their sample mean and covariance.

• This description uses the assumption that the patterns

form a cloud that can be modeled with a hyperellipsoidal

shape.

• However, we must be careful about any assumptions we

make about the structure of the data.

CS 551, Spring 2005 2/38

Data Description

Figure 1: These four data sets have identical first-order and second-order statistics.
We need to find other ways of modeling the structure. Clustering is an alternative
way of describing the data in terms of groups of patterns.

CS 551, Spring 2005 3/38

Clusters

• A cluster is comprised of a number of similar objects collected or

grouped together.

• Other definitions of clusters include (from Jain and Dubes, 1988):

I A cluster is a set of entities which are alike, and entities from

different clusters are not alike.

I A cluster is an aggregation of points in the test space such that

the distance between any two points in the cluster is less than

the distance between any point in the cluster and any point

not in it.

I Clusters may be described as connected regions of a multi-

dimensional space containing a relatively high density of points,

separated from other such regions by a region containing a

relatively low density of points.

CS 551, Spring 2005 4/38

Clustering

• Cluster analysis organizes data by abstracting the

underlying structure either as a grouping of individuals

or as a hierarchy of groups.

• These groupings are based on measured or perceived

similarities among the patterns.

• Clustering is unsupervised. Category labels and other

information about the source of data influence the

interpretation of the clusters, not their formation.

CS 551, Spring 2005 5/38

Clustering

• Clustering is a very difficult problem because data can

reveal clusters with different shapes and sizes.

Figure 2: The number of clusters in the data often depend on the resolution (fine
vs. coarse) with which we view the data. How many clusters do you see in this
figure? 5, 8, 10, more?

CS 551, Spring 2005 6/38

Clustering

• Clustering algorithms can be divided into several groups:

I Exclusive (each pattern belongs to only one cluster) vs.

nonexclusive (each pattern can be assigned to several clusters)

I Hierarchical (nested sequence of partitions) vs. partitional (a

single partition)

• Implementations of clustering algorithms can also be grouped:

I Agglomerative (merging atomic clusters into larger clusters)

vs. divisive (subdividing large clusters into smaller ones)

I Serial (processing patterns one by one) vs. simultaneous
(processing all patterns at once)

I Graph-theoretic (based on connectedness) vs. algebraic (based

on error criteria)

CS 551, Spring 2005 7/38

Clustering

• Hundreds of clustering algorithms have been proposed

in the literature.

• Most of these algorithms are based on the following two

popular techniques:

I Iterative squared-error partitioning

I Agglomerative hierarchical clustering

• One of the main challenges is to select an appropriate

measure of similarity to define clusters that is often both

data (cluster shape) and context dependent.

CS 551, Spring 2005 8/38

Similarity Measures

• The most obvious measure of similarity (or dissimilarity) between

two patterns is the distance between them.

• If distance is a good measure of dissimilarity, then we can expect

the distance between patterns in the same cluster to be significantly

less than the distance between patterns in different clusters.

• Then, a very simple way of doing clustering would be to choose a

threshold on distance and group the patterns that are closer than

this threshold.

Figure 3: The distance threshold affects the number and size of clusters that are
shown by lines drawn between points closer than the threshold.
CS 551, Spring 2005 9/38

Criterion Functions

• The next challenge after selecting the similarity measure

is the choice of the criterion function to be optimized.

• Suppose that we have a set D = {x1, . . . ,xn} of n

samples that we want to partition into exactly k disjoint

subsets D1, . . . ,Dk.

• Each subset is to represent a cluster, with samples in

the same cluster being somehow more similar to each

other than they are to samples in other clusters.

• The simplest and most widely used criterion function

for clustering is the sum-of-squared-error criterion.

CS 551, Spring 2005 10/38

Squared-error Partitioning

• Suppose that the given set of n patterns has somehow been

partitioned into k clusters D1, . . . ,Dk.

• Let ni be the number of samples in Di and let mi be the mean of

those samples

mi =
1
ni

∑
x∈Di

x

• Then, the sum-of-squared errors is defined by

Je =
k∑

i=1

∑
x∈Di

‖x−mi‖2

• For a given cluster Di, the mean vector mi (centroid) is the best

representative of the samples in Di.

CS 551, Spring 2005 11/38

Squared-error Partitioning

• A general algorithm for iterative squared-error partitioning:

1. Select an initial partition with k clusters. Repeat steps 2

through 5 until the cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest

cluster center.

3. Compute new cluster centers as the centroids of the clusters.

4. Repeat steps 2 and 3 until an optimum value of the criterion

function is found (e.g., when a local minimum is found or a

predefined number of iterations are completed).

5. Adjust the number of clusters by merging and splitting existing

clusters or by removing small or outlier clusters.

• This algorithm, without step 5, is also known as the k-means

algorithm.

CS 551, Spring 2005 12/38

Squared-error Partitioning

• k-means is computationally efficient and gives good

results if the clusters are compact, hyperspherical in

shape and well-separated in the feature space.

• However, choosing k and choosing the initial partition

are the main drawbacks of this algorithm.

• The value of k is often chosen empirically or by prior

knowledge about the data.

• The initial partition is often chosen by generating k

random points uniformly distributed within the range of

the data, or by randomly selecting k points from the

data.

CS 551, Spring 2005 13/38

Squared-error Partitioning

• Numerous attempts have been made to improve the performance

of the basic k-means algorithm:

I incorporating a fuzzy criterion resulting in fuzzy k-means,

I using genetic algorithms, simulated annealing, deterministic

annealing to optimize the resulting partition,

I using iterative splitting to find the initial partition.

• Another alternative is to use model-based clustering using Gaussian

mixtures to allow more flexible shapes for individual clusters (k-

means with Euclidean distance assumes spherical shapes).

• In model-based clustering, the value of k corresponds to the number

of components in the mixture.

CS 551, Spring 2005 14/38

Examples

(a) Good initialization. (b) Good initialization.

(c) Bad initialization. (d) Bad initialization.

Figure 4: Examples for k-means with different initializations of five clusters for the
same data.

CS 551, Spring 2005 15/38

Hierarchical Clustering

• The k-means algorithm produces a flat data description

where the clusters are disjoint and are at the same level.

• In some applications, groups of patterns share some

characteristics when looked at a particular level.

• Hierarchical clustering tries to capture these multi-level

groupings using hierarchical representations rather than

flat partitions.

CS 551, Spring 2005 16/38

Hierarchical Clustering

• In hierarchical clustering, for a set of n samples,

I the first level consists of n clusters (each cluster

containing exactly one sample),

I the second level contains n− 1 clusters,

I the third level contains n− 2 clusters,

I and so on until the last (n’th) level at which all

samples form a single cluster.

• Given any two samples, at some level they will be

grouped together in the same cluster and remain

together at all higher levels.

CS 551, Spring 2005 17/38

Hierarchical Clustering

• The most natural representation of hierarchical

clustering is a tree, also called a dendrogram, which

shows how the samples are grouped.

• If there is an unusually large gap between the similarity

values for two particular levels, one can argue that the

level with fewer number of clusters represents a more

natural grouping.

CS 551, Spring 2005 18/38

Hierarchical Clustering

Figure 5: A dendrogram can represent the results of hierarchical clustering
algorithms. The vertical axis shows a generalized measure of similarity among
clusters.

CS 551, Spring 2005 19/38

Hierarchical Clustering

• Agglomerative Hierarchical Clustering:

1. Specify the number of clusters. Place every pattern

in a unique cluster and repeat steps 2 and 3 until

a partition with the required number of clusters is

obtained.

2. Find the closest clusters according to a distance

measure.

3. Merge these two clusters.

4. Return the resulting clusters.

CS 551, Spring 2005 20/38

Hierarchical Clustering

• Popular distance measures (for two clusters Di and Dj):

dmin(Di,Dj) = min
x∈Di
x′∈Dj

‖x− x′‖

dmax(Di,Dj) = max
x∈Di
x′∈Dj

‖x− x′‖

davg(Di,Dj) =
1

#Di #Dj

∑
x∈Di

∑
x′∈Dj

‖x− x′‖

dmean(Di,Dj) = ‖mi −mj‖

CS 551, Spring 2005 21/38

Hierarchical Clustering

• When dmin is used to measure the distance between

clusters, the algorithm is called the nearest neighbor

clustering algorithm.

• Moreover, if the algorithm is terminated when the

distance between nearest clusters exceeds a threshold,

it is called the single linkage algorithm where

I patterns represent the nodes of a graph,

I edges connect patterns belonging to the same

cluster,

I merging two clusters corresponds to adding an edge

between the nearest pair of nodes in these clusters.

CS 551, Spring 2005 22/38

Hierarchical Clustering

• When dmax is used to measure the distance between

clusters, the algorithm is called the farthest neighbor

clustering algorithm.

• Moreover, if the algorithm is terminated when the

distance between nearest clusters exceeds a threshold,

it is called the complete linkage algorithm where

I patterns represent the nodes of a graph,

I edges connect all patterns belonging to the same

cluster,

I merging two clusters corresponds to adding edges

between every pair of nodes in these clusters.

CS 551, Spring 2005 23/38

Hierarchical Clustering

Figure 6: Examples for single linkage
clustering.

Figure 7: Examples for complete linkage
clustering.

CS 551, Spring 2005 24/38

Hierarchical Clustering

• Stepwise-Optimal Hierarchical Clustering:

1. Specify the number of clusters. Place every pattern in a unique

cluster and repeat steps 2 and 3 until a partition with the

required number of clusters is obtained.

2. Find the clusters whose merger increases an error criterion the

least.

3. Merge these two clusters.

4. Return the resulting clusters.

• When the sum-of-squared-error criterion Je is used, the pair of

clusters whose merger increases Je as little as possible is the pair

for which the distance

de(Di,Dj) =
#Di #Dj

#Di + #Dj
‖mi −mj‖2

is minimum.

CS 551, Spring 2005 25/38

Graph-Theoretic Clustering

• Graph: (S, R)
I S: Set of nodes

I R: Set of edges, R ⊆ S × S

• Clique: Set of nodes that are all connected to each

other, {P ⊆ S|P × P ⊆ R}.
• Goal: Find clusters in a graph that are not as dense

as cliques but are compact enough within user specified

thresholds.

CS 551, Spring 2005 26/38

Graph-Theoretic Clustering

4

9

2

10

7

6

5

3

8

1

Figure 8: An example graph.

CS 551, Spring 2005 27/38

Graph-Theoretic Clustering

• (X, Y) ∈ R means Y is a neighbor of X,

Neighborhood(X) = {Y | (X, Y) ∈ R}.

• Conditional density D(Y |X) is the number of nodes

in the neighborhood of X which have Y as a neighbor,

D(Y |X) = #{N ∈ S | (N,Y) ∈ R and (X, N) ∈ R}
= D(X|Y)

= #{Neighborhood(X) ∩ Neighborhood(Y)}.

CS 551, Spring 2005 28/38

Graph-Theoretic Clustering

• Given an integer K, a dense region Z around a node

X ∈ S is defined as

Z(X, K) = {Y ∈ S | D(Y |X) ≥ K}.

• Z(X) = Z(X, J) is a dense region candidate around

X where

J = max{K | #Z(X, K) ≥ K}

because if M is a major clique of size L, then X, Y ∈ M

implies that D(Y |X) ≥ L. Thus M ⊆ Z(X, L) and

K ≤ L ≤ #Z(X, K).

CS 551, Spring 2005 29/38

Graph-Theoretic Clustering

• Association of a node X to a subset B of S is

A(X|B) =
#{Neighborhood(X) ∩B}

#B

where 0 ≤ A(X|B) ≤ 1.

• Compactness of a subset B of S is

C(B) =
1

#B

∑
X∈B

A(X|B)

where 0 ≤ C(B) ≤ 1.

CS 551, Spring 2005 30/38

Graph-Theoretic Clustering

• A dense region B of the graph (S, R) should satisfy

1. B = {N ∈ Z(X) | A(N |Z(X)) ≥ τa} for some

X ∈ S,

2. C(B) ≥ τc,

3. #B ≥ τs

where τa, τc and τs are thresholds supplied by the user

for minimum association, minimum compactness, and

minimum size, respectively.

CS 551, Spring 2005 31/38

Graph-Theoretic Clustering

• Algorithm for finding a dense region around a node X:

1. Compute D(Y |X) for every other node Y in S.

2. Find a dense region candidate Z(X, K ′) where

K ′ = max{K | #{Y |D(Y |X) ≥ K} ≥ K}.

3. Remove the nodes with a low association from the

candidate set. Iterate until all of the nodes have

high enough association.

4. Check whether the remaining nodes have high

enough average association.

5. Check whether the candidate set is large enough.

CS 551, Spring 2005 32/38

Graph-Theoretic Clustering

• Given the dense regions, the algorithm for graph-theoretic clustering

proceeds as follows:

1. Define the dense-region relation F as

F = {(B1, B2) | B1, B2 are dense regions of R,

#B1 ∩B2

#B1
≥ τo or

#B1 ∩B2

#B2
≥ τo}

where τo is a threshold supplied by the user for minimum

overlap.

2. Merge the regions that have enough overlap if all of the nodes in

the set resulting after merging have high enough associations.

3. Iterate until no regions can be merged.

CS 551, Spring 2005 33/38

Graph-Theoretic Clustering

4

9

2

10

7

6

5

3

8

1

Figure 9: Clusters found in the example graph using the thresholds τa =
0.5, τc = 0.6, τs = 3, τo = 0.9: {1, 2, 3, 4, 6} (compactness=0.92), {7, 8, 9, 10}
(compactness=1.00), {2, 5, 6, 7, 10} (compactness=0.68).

CS 551, Spring 2005 34/38

Graph-Theoretic Clustering

510

7

9

18

3

6

42

Figure 10: Another example graph.

CS 551, Spring 2005 35/38

Graph-Theoretic Clustering

510

7

9

18

3

6

42

Figure 11: Clusters found in the second example graph using the thresholds τa =
0.5, τc = 0.8, τs = 3, τo = 0.75: {1, 2, 3, 4, 6, 8} (compactness=0.78), {2, 4, 5, 8}
(compactness=0.88), {5, 7, 9, 10} (compactness=1.00).

CS 551, Spring 2005 36/38

Cluster Validity

• The procedures we have considered so far either assume

that the number of clusters is known or use some

thresholds to decide how the clusters are formed.

• These may be reasonable assumptions for some

applications but are usually unjustified if we are exploring

a data set whose properties and structure are unknown.

• Furthermore, most of the iterative algorithms that we

use may find a local extremum and may not give the

best result.

CS 551, Spring 2005 37/38

Cluster Validity

• Methods for validating the results of a clustering

algorithm include:

I Repeating the clustering procedure for different

values of the parameters, and examining the resulting

values of the criterion function for large jumps or

stable ranges.

I Evaluating the goodness-of-fit using measures such

as the chi-squared or Kolmogorov-Smirnov statistics.

I Formulating hypothesis tests that check whether

multiple clusters found have been formed by chance,

and whether the observed change in the error

criterion has any significance.
CS 551, Spring 2005 38/38

