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Non-Bayesian Classifiers

• We have been using Bayesian classifiers that make

decisions according to the posterior probabilities.

• We have discussed parametric and non-parametric

methods that learn classifiers by estimating the

probabilities using training data.

• We will study new techniques that use training data

to learn the classifiers directly without estimating any

probabilistic structure.

• In particular, we will study the k-nearest neighbor

classifier, linear discriminant functions and support

vector machines, neural networks, and decision trees.
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The Nearest Neighbor Classifier

• Given the training data D = {x1, . . . ,xn} as a set of n

labeled examples, the nearest neighbor classifier assigns

a test point x the label associated with its closest

neighbor in D.

• Closeness is defined using a distance function.

• Given the distance function, the nearest neighbor

classifier partitions the feature space into cells consisting

of all points closer to a given training point than to any

other training points.
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The Nearest Neighbor Classifier

• All points in such a cell are labeled by the class of

the training point, forming a Voronoi tesselation of the

space.

Figure 1: In two dimensions, the nearest neighbor algorithm leads to a partitioning
of the input space into Voronoi cells, each labeled by the class of the training point
it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal.
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The k-Nearest Neighbor Classifier

• The k-nearest neighbor classifier classifies x by assigning

it the label most frequently represented among the k

nearest samples.

• In other words, a decision is made by examining the

labels on the k-nearest neighbors and taking a vote.

Figure 2: The k-nearest neighbor query forms a spherical region around the test
point x until it encloses k training samples, and it labels the test point by a majority
vote of these samples. In the case for k = 5, the test point will be labeled as black.
CS 551, Spring 2005 4/12



The k-Nearest Neighbor Classifier

• The computational complexity of the nearest neighbor

algorithm — both in space (storage) and time (search)

— has received a great deal of analysis.

• In the most straightforward approach, we inspect each

stored point one by one, calculate its distance to x, and

keep a list of the k closest ones.

• There are some parallel implementations and algorithmic

techniques for reducing the computational load in

nearest neighbor searches.
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The k-Nearest Neighbor Classifier

• Examples of algorithmic techniques include

I computing partial distances using a subset of

dimensions, and eliminating the points with partial

distances greater than the full distance of the current

closest points,

I using search trees that are hierarchically structured

so that only a subset of the training points are

considered during search,

I editing the training set by eliminating the points

that are surrounded by other training points with

the same class label.
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Distance Functions

• The nearest neighbor classifier relies on a metric or a

distance function between points.

• For all points x, y and z, a metric D(·, ·) must have

the following properties:

I Nonnegativity: D(x,y) ≥ 0
I Reflexivity: D(x,y) = 0 if and only if x = y
I Symmetry: D(x,y) = D(y,x)
I Triangle inequality: D(x,y) + D(y, z) ≥ D(x, z)

• If the second property is not satisfied, D(·, ·) is called a

pseudometric.
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Distance Functions

• A general class of metrics for d-dimensional patterns is the

Minkowski metric

Lp(x,y) =

(
d∑

i=1

|xi − yi|p
)1/p

also referred to as the Lp norm.

• The Euclidean distance is the L2 norm

L2(x,y) =

(
d∑

i=1

|xi − yi|2
)1/2

• The Manhattan or city block distance is the L1 norm

L1(x,y) =
d∑

i=1

|xi − yi|
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Distance Functions

• The L∞ norm is the maximum of the distances along individual

coordinate axes

L∞(x,y) =
d

max
i=1

|xi − yi|

Figure 3: Each colored shape consists of points at a distance 1.0 from the origin,
measured using different values of p in the Minkowski Lp metric.
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Feature Normalization

• We should be careful about scaling of the coordinate

axes when we compute these metrics.

• When there is great difference in the range of the data

along different axes in a multidimensional space, these

metrics implicitly assign more weighting to features with

large ranges than those with small ranges.

• Feature normalization can be used to approximately

equalize ranges of the features and make them

have approximately the same effect in the distance

computation.
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Feature Normalization

• The following methods can be used to independently normalize

each feature.

• Linear scaling to unit range:

Given a lower bound l and an upper bound u for a feature x ∈ R,

x̃ =
x− l

u− l

results in x̃ being in the [0, 1] range.

• Linear scaling to unit variance:

A feature x ∈ R can be transformed to a random variable with

zero mean and unit variance as

x̃ =
x− µ

σ
where µ and σ are the sample mean and the sample standard

deviation of that feature, respectively.
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Feature Normalization

• Normalization using the cumulative distribution function:

Given a random variable x ∈ R with cumulative distribution

function Fx(x), the random variable x̃ resulting from the

transformation x̃ = Fx(x) will be uniformly distributed in the

[0, 1] range.

• Rank normalization:

Given the sample for a feature as x1, . . . , xn ∈ R, first we find

the order statistics x(1), . . . , x(n) and then replace each pattern’s

feature value by its corresponding normalized rank as

x̃i =
rank

x1,...,xn
(xi)− 1

n− 1
where xi is the feature value for the i’th pattern. This procedure

uniformly maps all feature values to the [0, 1] range.

CS 551, Spring 2005 12/12


