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Introduction
e Density estimation with parametric models assumes that
the forms of the underlying density functions are known.

e However, common parametric forms do not always fit
the densities actually encountered in practice.

e In addition, most of the classical parametric densities
are unimodal, whereas many practical problems involve
multimodal densities.

e Non-parametric methods can be used with arbitrary
distributions and without the assumption that the forms
of the underlying densities are known.

CS 551, Spring 2005 1/19



Density Estimation

e Suppose that n samples x1,...,X, are drawn i.i.d.
according to the distribution p(x).

e [ he probability P that a vector x will fall in a region R
IS given by

P = /R p(x")dx’

e T he probability that £ of the n will fall in ‘R is given by
the binomial law

P, = (Z) Pk — Pyt

e The expected value of k is E|k] = nP and the MLE for
PisP==%
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Density Estimation

e If we assume that p(x) is continuous and R is small
enough so that p(x) does not vary significantly in it, we
can get the approximation

/R p(x)dx’ ~ p(x)V

where x is a point in /R and V is the volume of K.

e [hen, the density estimate becomes

N@

p(x) = 7
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Density Estimation

e Let n be the number of samples used, R,, be the region
used with n samples, V,, be the volume of R,, k, be
the number of samples falling in R,,, and p,(x) = k’%n

be the estimate for p(x).

e If p,(x) is to converge to p(x), three conditions are
required:
lim V,, =0

n—oo

lim k,, = o0
Fn

lim — =20

n—oo M,
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Density Estimation

e [here are two common ways of obtaining the regions
that satisfy these conditions:
» Shrink regions as some function of n, such as V,, =
1/y/n. This is the Parzen window estimation.
» Specify k, as some function of n, such as k, = /n.
This Is the k-nearest neighbor estimation.
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Figure 1: Two common methods for estimating the density at a point, here at the
center of each square.
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Parzen Windows

e Suppose that ¢ is a d-dimensional window function that
satisfies the properties of a density function, i.e.,

e(u) >0 and /gp(u)du =1

e A density estimate can be obtained as
1 1 X — X;
w0 =13 5o (5

where h,, is the window width and V,, = h.
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Parzen Windows

e [he density estimate can also be written as

1 n
pn(X) — E Z 5n(X_Xi) where 5n(x) — 7 0 h_
1=1 n n

Figure 2: Examples of two-dimensional circularly symmetric Parzen windows for
three different values of h,,. The value of h,, affects both the amplitude and the

width of d,,(x).
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Parzen Windows

e If h, is very large, p,(x) is the superposition of n broad functions,
and is a smooth “out-of-focus” estimate of p(x).

o If h, is very small, p,(x) is the superposition of n sharp pulses
centered at the samples, and is a “noisy” estimate of p(x).

e As h,, approaches zero, d,,(x—x;) approaches a Dirac delta function
centered at x;, and p,(x) is a superposition of delta functions.

R
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Figure 3: Parzen window density estimates based on the same set of five samples
using the window functions in the previous figure.
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Figure 4: Parzen window estimates of a univariate Gau55|an denS|ty using different
window widths and numbers of samples where p(u) = N(0,1) and h,, = h1/+/n.
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N(0,I) and h,, = hy1/y/n.

Figure 5: Parzen window estimates of a bivariate Gaussian density using different
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window widths and numbers of samples where ©(u
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Figure 6: Estimates of a mixture of a uniform and a triangle density using different
window widths and numbers of samples where p(u) = N(0,1) and h,, = hi/\/n.
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Parzen Windows

e Densities estimated using Parzen windows can be used with the
Bayesian decision rule for classification.

e The training error can be made arbitrarily low by making the
window width sufficiently small.

e However, the goal is to classify novel patterns so the window width
cannot be made too small.
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Figure 7: Decision boundaries in 2-D. The left figure uses a small window width
and the right figure uses a larger window width.
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k-Nearest Neighbors

e A potential remedy for the problem of the unknown
“best” window function is to let the estimation volume
be a function of the training data, rather than some
arbitrary function of the overall number of samples.

e To estimate p(x) from n samples, we can center a
volume about x and let it grow until it captures k,
samples, where k,, is some function of n.

e These samples are called the k-nearest neighbors of x.

e If the density is high near x, the volume will be relatively
small. If the density is low, the volume will grow large.
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Figure 8: k-nearest neighbor estimates of two 1-D densities: a Gaussian and a
bimodal distribution.

CS 551, Spring 2005 14/19



k-Nearest Neighbors

e Posterior probabilities can be estimated from a set of
n labeled samples and can be used with the Bayesian
decision rule for classification.

e Suppose that a volume V around x includes k samples,
k; of which are labeled as belonging to class w;.

e As estimate for the joint probability p(x,w;) becomes

n\X, W;) =
P(X, wi) = —
and gives an estimate for the posterior probability
n\y Wy kz
Pn(wz‘x) — cp (X w) —

ijl pn(X7 wj) n
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Non-parametric Methods

continuous X

use as Is quantize

p(x) = k/7n p(x) = pmf using

/ \ relative frequencies

fixed window, variable window,
variable k fixed k
(Parzen windows) (k-nearest neighbors)
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Non-parametric Methods

e Advantages:
» No assumptions are needed about the distributions
ahead of time (generality).
» With enough samples, convergence to an arbitrarily
complicated target density can be obtained.

e Disadvantages:

» The number of samples needed may be very large
(number grows exponentially with the dimensionality
of the feature space).

» [ here may be severe requirements for computation
time and storage.
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Circular data
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Figure 9: Density estimation
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Estimate with mixture of 5 Gaussians
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Banana shaped data
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Figure 10: Density estimation
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Estimate with mixture of 3 Gaussians
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examples for 2-D banana shaped data.
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