Non-parametric Methods

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr

Introduction

- Density estimation with parametric models assumes that the forms of the underlying density functions are known.
- However, common parametric forms do not always fit the densities actually encountered in practice.
- In addition, most of the classical parametric densities are unimodal, whereas many practical problems involve multimodal densities.
- Non-parametric methods can be used with arbitrary distributions and without the assumption that the forms of the underlying densities are known.

- Suppose that n samples $\mathbf{x_1}, \dots, \mathbf{x_n}$ are drawn i.i.d. according to the distribution $p(\mathbf{x})$.
- The probability P that a vector ${\bf x}$ will fall in a region ${\cal R}$ is given by

$$P = \int_{\mathcal{R}} p(\mathbf{x'}) d\mathbf{x'}$$

• The probability that k of the n will fall in \mathcal{R} is given by the binomial law

$$P_k = \binom{n}{k} P^k (1 - P)^{n-k}$$

• The expected value of k is E[k] = nP and the MLE for P is $\hat{P} = \frac{k}{n}$.

CS 551, Spring 2005 2/19

• If we assume that $p(\mathbf{x})$ is continuous and \mathcal{R} is small enough so that $p(\mathbf{x})$ does not vary significantly in it, we can get the approximation

$$\int_{\mathcal{R}} p(\mathbf{x'}) d\mathbf{x'} \simeq p(\mathbf{x}) V$$

where \mathbf{x} is a point in \mathcal{R} and V is the volume of \mathcal{R} .

Then, the density estimate becomes

$$p(\mathbf{x}) \simeq \frac{k/n}{V}$$

- Let n be the number of samples used, \mathcal{R}_n be the region used with n samples, V_n be the volume of \mathcal{R}_n , k_n be the number of samples falling in \mathcal{R}_n , and $p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$ be the estimate for $p(\mathbf{x})$.
- If $p_n(\mathbf{x})$ is to converge to $p(\mathbf{x})$, three conditions are required:

$$\lim_{n \to \infty} V_n = 0$$

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

CS 551, Spring 2005 4/19

- There are two common ways of obtaining the regions that satisfy these conditions:
 - Shrink regions as some function of n, such as $V_n = 1/\sqrt{n}$. This is the *Parzen window* estimation.
 - Specify k_n as some function of n, such as $k_n = \sqrt{n}$. This is the k-nearest neighbor estimation.

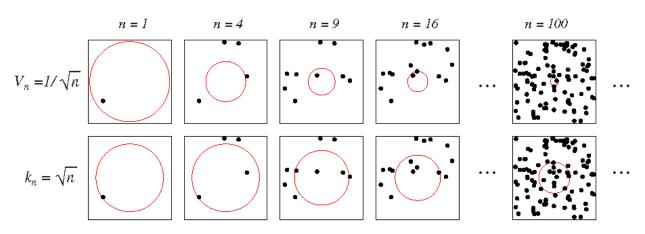


Figure 1: Two common methods for estimating the density at a point, here at the center of each square.

CS 551, Spring 2005 5/19

• Suppose that φ is a d-dimensional window function that satisfies the properties of a density function, i.e.,

$$\varphi(\mathbf{u}) \ge 0$$
 and $\int \varphi(\mathbf{u}) d\mathbf{u} = 1$

A density estimate can be obtained as

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

where h_n is the window width and $V_n = h_n^d$.

CS 551, Spring 2005 6/19

The density estimate can also be written as

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i) \quad \text{where} \quad \delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

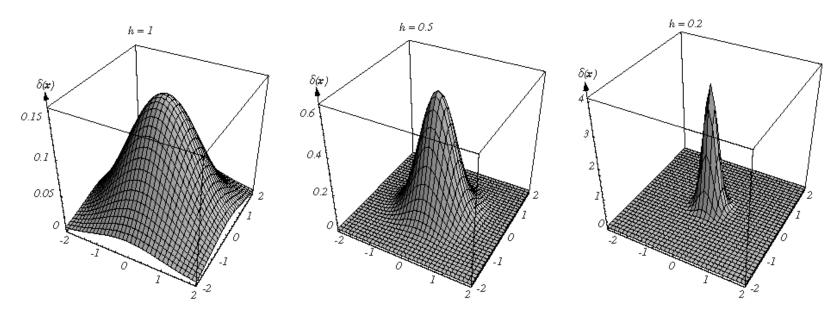


Figure 2: Examples of two-dimensional circularly symmetric Parzen windows for three different values of h_n . The value of h_n affects both the amplitude and the width of $\delta_n(\mathbf{x})$.

CS 551, Spring 2005 7/19

- If h_n is very large, $p_n(\mathbf{x})$ is the superposition of n broad functions, and is a smooth "out-of-focus" estimate of $p(\mathbf{x})$.
- If h_n is very small, $p_n(\mathbf{x})$ is the superposition of n sharp pulses centered at the samples, and is a "noisy" estimate of $p(\mathbf{x})$.
- As h_n approaches zero, $\delta_n(\mathbf{x}-\mathbf{x_i})$ approaches a Dirac delta function centered at $\mathbf{x_i}$, and $p_n(\mathbf{x})$ is a superposition of delta functions.

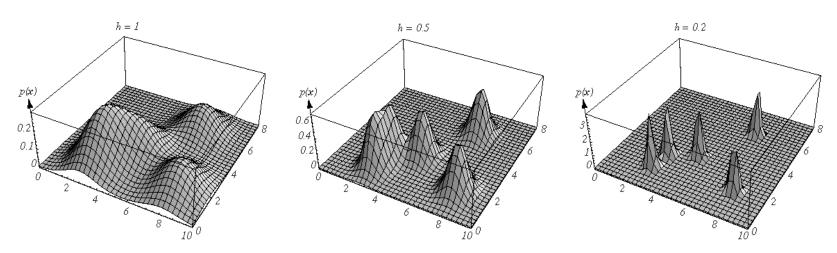


Figure 3: Parzen window density estimates based on the same set of five samples using the window functions in the previous figure.

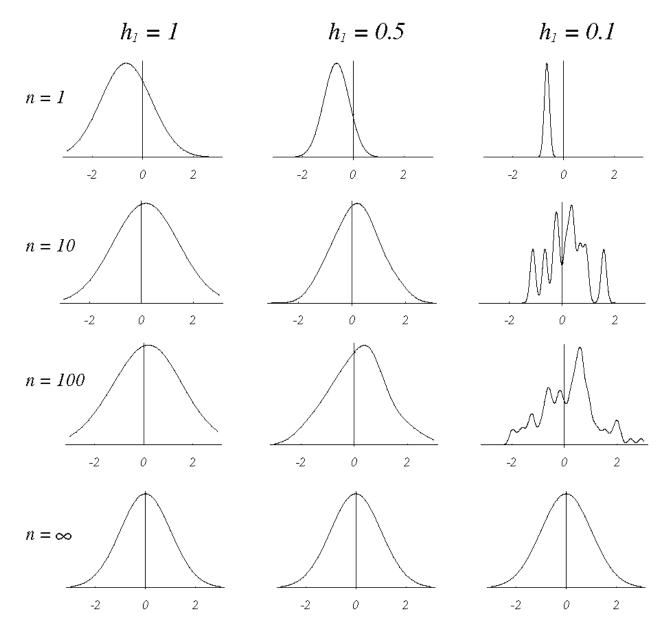


Figure 4: Parzen window estimates of a univariate Gaussian density using different window widths and numbers of samples where $\varphi(u) = N(0,1)$ and $h_n = h_1/\sqrt{n}$.

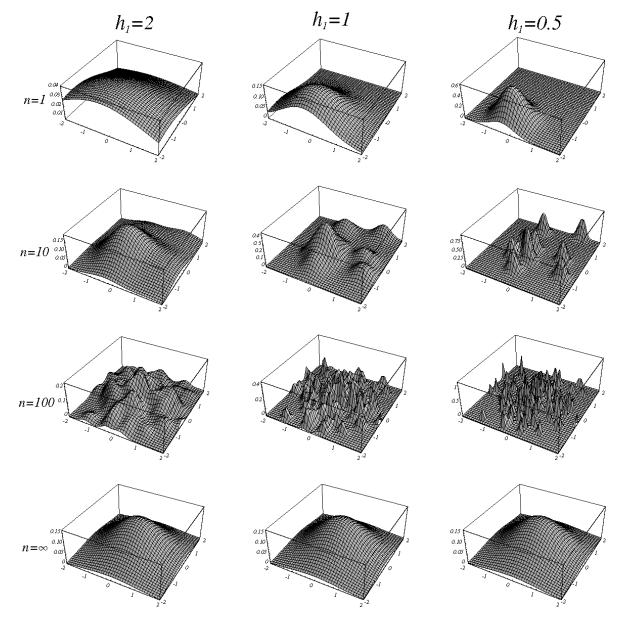


Figure 5: Parzen window estimates of a bivariate Gaussian density using different window widths and numbers of samples where $\varphi(\mathbf{u}) = N(\mathbf{0}, \mathbf{I})$ and $h_n = h_1/\sqrt{n}$.

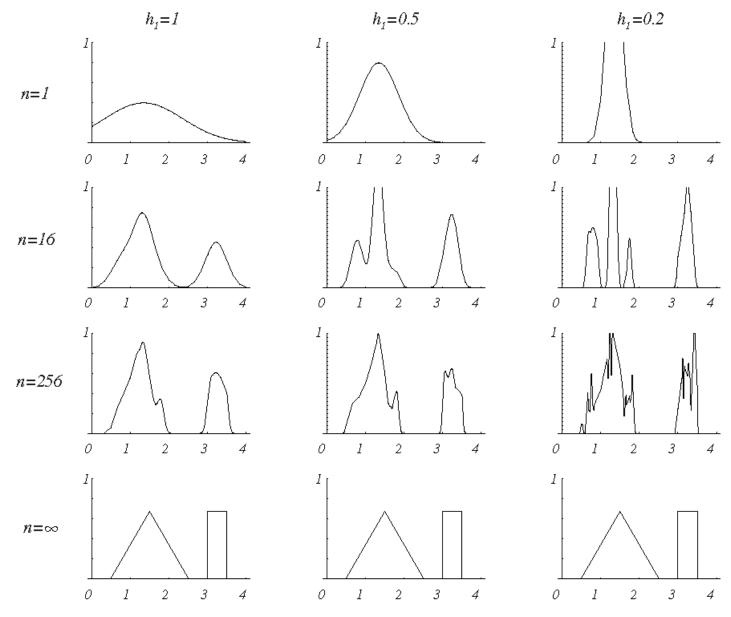


Figure 6: Estimates of a mixture of a uniform and a triangle density using different window widths and numbers of samples where $\varphi(\mathbf{u}) = N(\mathbf{0}, \mathbf{I})$ and $h_n = h_1/\sqrt{n}$.

- Densities estimated using Parzen windows can be used with the Bayesian decision rule for classification.
- The training error can be made arbitrarily low by making the window width sufficiently small.
- However, the goal is to classify novel patterns so the window width cannot be made too small.

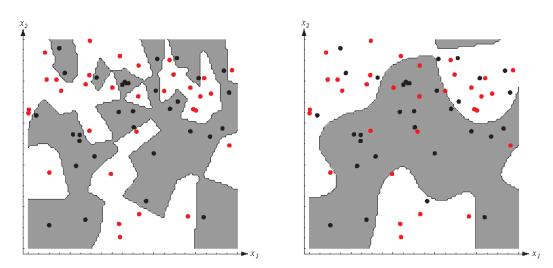


Figure 7: Decision boundaries in 2-D. The left figure uses a small window width and the right figure uses a larger window width.

k-Nearest Neighbors

- A potential remedy for the problem of the unknown "best" window function is to let the estimation volume be a function of the training data, rather than some arbitrary function of the overall number of samples.
- To estimate $p(\mathbf{x})$ from n samples, we can center a volume about \mathbf{x} and let it grow until it captures k_n samples, where k_n is some function of n.
- These samples are called the k-nearest neighbors of x.
- If the density is high near x, the volume will be relatively small. If the density is low, the volume will grow large.

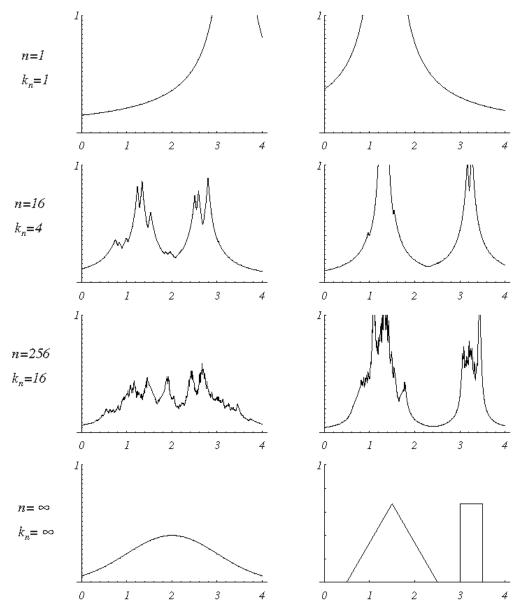


Figure 8: k-nearest neighbor estimates of two 1-D densities: a Gaussian and a bimodal distribution.

k-Nearest Neighbors

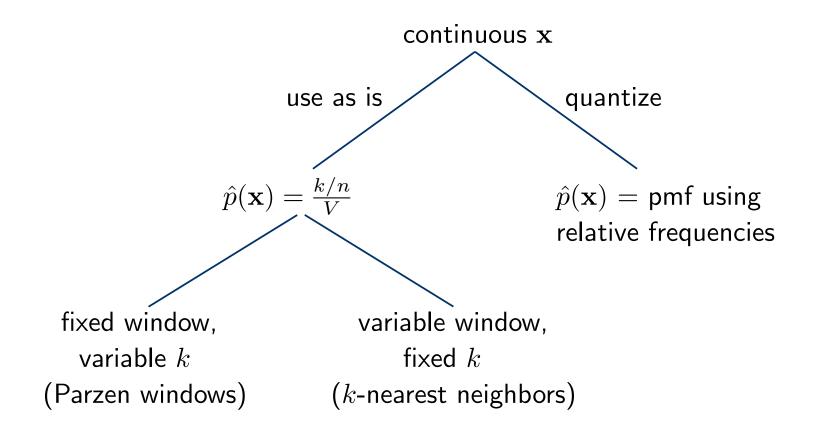
- Posterior probabilities can be estimated from a set of n labeled samples and can be used with the Bayesian decision rule for classification.
- Suppose that a volume V around \mathbf{x} includes k samples, k_i of which are labeled as belonging to class w_i .
- As estimate for the joint probability $p(\mathbf{x}, w_i)$ becomes

$$p_n(\mathbf{x}, w_i) = \frac{k_i/n}{V}$$

and gives an estimate for the posterior probability

$$P_n(w_i|\mathbf{x}) = \frac{p_n(\mathbf{x}, w_i)}{\sum_{j=1}^c p_n(\mathbf{x}, w_j)} = \frac{k_i}{n}$$

Non-parametric Methods



Non-parametric Methods

Advantages:

- No assumptions are needed about the distributions ahead of time (generality).
- ► With enough samples, convergence to an arbitrarily complicated target density can be obtained.

Disadvantages:

- ► The number of samples needed may be very large (number grows exponentially with the dimensionality of the feature space).
- ► There may be severe requirements for computation time and storage.

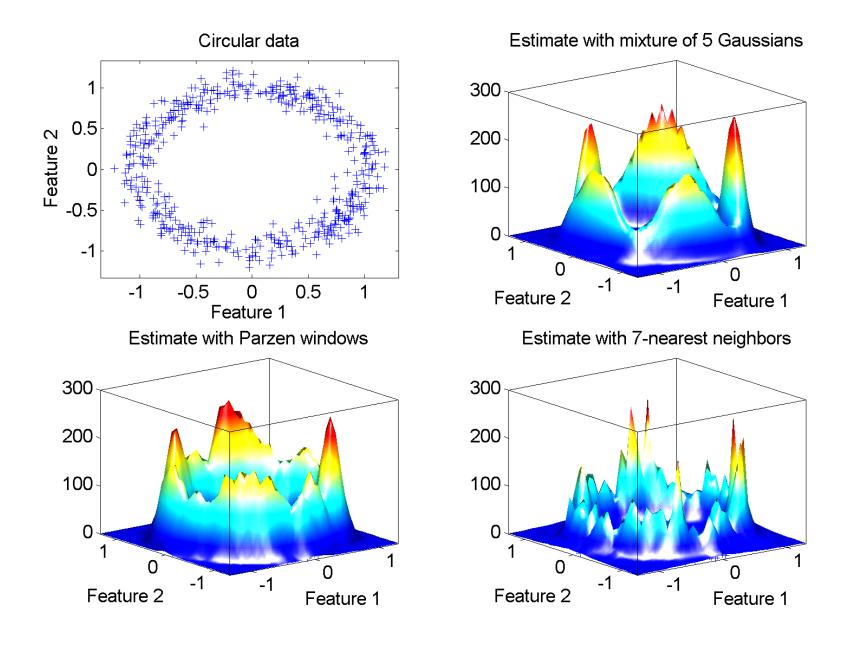


Figure 9: Density estimation examples for 2-D circular data.

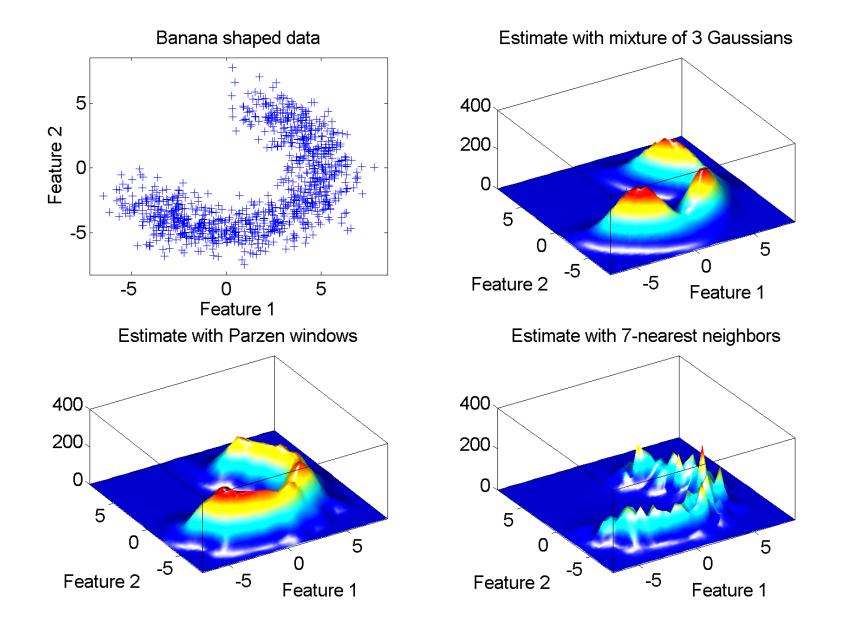


Figure 10: Density estimation examples for 2-D banana shaped data.