Non-parametric Methods

Selim Aksoy
Bilkent University
Department of Computer Engineering
saksoy@cs.bilkent.edu.tr
Introduction

• Density estimation with parametric models assumes that the forms of the underlying density functions are known.

• However, common parametric forms do not always fit the densities actually encountered in practice.

• In addition, most of the classical parametric densities are unimodal, whereas many practical problems involve multimodal densities.

• Non-parametric methods can be used with arbitrary distributions and without the assumption that the forms of the underlying densities are known.
Density Estimation

• Suppose that \(n \) samples \(x_1, \ldots, x_n \) are drawn i.i.d. according to the distribution \(p(x) \).

• The probability \(P \) that a vector \(x \) will fall in a region \(\mathcal{R} \) is given by

\[
P = \int_{\mathcal{R}} p(x')dx'
\]

• The probability that \(k \) of the \(n \) will fall in \(\mathcal{R} \) is given by the binomial law

\[
P_k = \binom{n}{k} P^k (1 - P)^{n-k}
\]

• The expected value of \(k \) is \(E[k] = nP \) and the MLE for \(P \) is \(\hat{P} = \frac{k}{n} \).
Density Estimation

- If we assume that $p(x)$ is continuous and \mathcal{R} is small enough so that $p(x)$ does not vary significantly in it, we can get the approximation

$$\int_{\mathcal{R}} p(x') dx' \approx p(x)V$$

where x is a point in \mathcal{R} and V is the volume of \mathcal{R}.

- Then, the density estimate becomes

$$p(x) \approx \frac{k}{nV}$$
Density Estimation

• Let n be the number of samples used, \mathcal{R}_n be the region used with n samples, V_n be the volume of \mathcal{R}_n, k_n be the number of samples falling in \mathcal{R}_n, and $p_n(x) = \frac{k_n}{V_n}$ be the estimate for $p(x)$.

• If $p_n(x)$ is to converge to $p(x)$, three conditions are required:

$$\lim_{n \to \infty} V_n = 0$$

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$
Density Estimation

- There are two common ways of obtaining the regions that satisfy these conditions:
 - Shrink regions as some function of \(n \), such as \(V_n = 1/\sqrt{n} \). This is the *Parzen window* estimation.
 - Specify \(k_n \) as some function of \(n \), such as \(k_n = \sqrt{n} \). This is the *\(k \)-nearest neighbor* estimation.

Figure 1: Two common methods for estimating the density at a point, here at the center of each square.
Parzen Windows

• Suppose that φ is a d-dimensional window function that satisfies the properties of a density function, i.e.,

\[\varphi(u) \geq 0 \quad \text{and} \quad \int \varphi(u) du = 1 \]

• A density estimate can be obtained as

\[p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{V_n} \varphi \left(\frac{x - x_i}{h_n} \right) \]

where h_n is the window width and $V_n = h_n^d$.

The density estimate can also be written as

\[p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \delta_n(x - x_i) \quad \text{where} \quad \delta_n(x) = \frac{1}{V_n} \varphi \left(\frac{x}{h_n} \right) \]

Figure 2: Examples of two-dimensional circularly symmetric Parzen windows for three different values of \(h_n \). The value of \(h_n \) affects both the amplitude and the width of \(\delta_n(x) \).
Parzen Windows

- If \(h_n \) is very large, \(p_n(x) \) is the superposition of \(n \) broad functions, and is a smooth “out-of-focus” estimate of \(p(x) \).
- If \(h_n \) is very small, \(p_n(x) \) is the superposition of \(n \) sharp pulses centered at the samples, and is a “noisy” estimate of \(p(x) \).
- As \(h_n \) approaches zero, \(\delta_n(x - x_i) \) approaches a Dirac delta function centered at \(x_i \), and \(p_n(x) \) is a superposition of delta functions.

Figure 3: Parzen window density estimates based on the same set of five samples using the window functions in the previous figure.
Figure 4: Parzen window estimates of a univariate Gaussian density using different window widths and numbers of samples where $\varphi(u) = N(0, 1)$ and $h_n = h_1/\sqrt{n}$.
Figure 5: Parzen window estimates of a bivariate Gaussian density using different window widths and numbers of samples where $\varphi(u) = N(0, I)$ and $h_n = h_1/\sqrt{n}$.
Figure 6: Estimates of a mixture of a uniform and a triangle density using different window widths and numbers of samples where $\varphi(u) = N(0, I)$ and $h_n = h_1/\sqrt{n}$.
Parzen Windows

- Densities estimated using Parzen windows can be used with the Bayesian decision rule for classification.
- The training error can be made arbitrarily low by making the window width sufficiently small.
- However, the goal is to classify novel patterns so the window width cannot be made too small.

Figure 7: Decision boundaries in 2-D. The left figure uses a small window width and the right figure uses a larger window width.
k-Nearest Neighbors

- A potential remedy for the problem of the unknown “best” window function is to let the estimation volume be a function of the training data, rather than some arbitrary function of the overall number of samples.
- To estimate $p(x)$ from n samples, we can center a volume about x and let it grow until it captures k_n samples, where k_n is some function of n.
- These samples are called the k-nearest neighbors of x.
- If the density is high near x, the volume will be relatively small. If the density is low, the volume will grow large.
Figure 8: k-nearest neighbor estimates of two 1-D densities: a Gaussian and a bimodal distribution.
k-Nearest Neighbors

- Posterior probabilities can be estimated from a set of n labeled samples and can be used with the Bayesian decision rule for classification.
- Suppose that a volume V around x includes k samples, k_i of which are labeled as belonging to class w_i.
- As estimate for the joint probability $p(x, w_i)$ becomes

$$p_n(x, w_i) = \frac{k_i}{n}$$

and gives an estimate for the posterior probability

$$P_n(w_i|x) = \frac{p_n(x, w_i)}{\sum_{j=1}^{c} p_n(x, w_j)} = \frac{k_i}{n}$$
Non-parametric Methods

\[\hat{p}(x) = \frac{k/n}{V} \]

- Continuous \(x \)
 - Use as is
 - Quantize

- Fixed window, variable \(k \)
 - (Parzen windows)

- Variable window, fixed \(k \)
 - \((k\text{-nearest neighbors})\)
Non-parametric Methods

- **Advantages:**
 - No assumptions are needed about the distributions ahead of time (generality).
 - With enough samples, convergence to an arbitrarily complicated target density can be obtained.

- **Disadvantages:**
 - The number of samples needed may be very large (number grows exponentially with the dimensionality of the feature space).
 - There may be severe requirements for computation time and storage.
Figure 9: Density estimation examples for 2-D circular data.
Figure 10: Density estimation examples for 2-D banana shaped data.