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Missing Features

e Suppose that we have a Bayesian classifier that uses the
feature vector x but a subset x, of x are observed and
the values for the remaining features x; are missing.

e How can we make a decision?
» Throw away the observations with missing values.
» Or, substitute x; by their average X; in the training
data, and use x = (x4, Xp).
» Or, marginalize the posterior over the missing
features, and use the resulting posterior

P(w;|xq,Xp) p(Xq, Xp) dXp
Pluyfxg) — 200X X0) DXy
fp(Xga Xb) de
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Expectation-Maximization

e We can also extend maximum likelthood techniques
to allow learning of parameters when some training

patterns have missing features.
e The Expectation-Maximization (EM) algorithm is a

general method of finding the maximum likelihood
estimates of the parameters of a distribution from

training data.
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Expectation-Maximization

e [here are two main applications of the EM algorithm:

» Learning when the data is incomplete or has missing
values.

» Optimizing a likelihood function that is analytically
intractable but can be simplified by assuming the
existence of and values for additional but missing (or
hidden) parameters.

e The second problem is more common in pattern
recognition applications.
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Expectation-Maximization
e Assume that the observed data X is generated by some
distribution.

e Assume that a complete dataset Z = (X', )) exists as
a combination of the observed but incomplete data X
and the missing data ) .

e [ he observations in Z are assumed to be i.i.d. from the
joint density

p(z|®) = p(x,y|O) = p(y|x, O)p(x|O)
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Expectation-Maximization

e \We can define a new likelihood function
L(®|Z) = L(O|X,Y) =p(X,)V|O)

called the complete-data likelihood where L(®|X) is
referred to as the incomplete-data likelihood.

e The EM algorithm

» First, finds the expected value of the complete-data
log-likelihood using the current parameter estimates
(expectation step).

» Then, maximizes this expectation (maximization
step).
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Expectation-Maximization

e Define
Q0,08 V) = E[logp(X,Y|©) | X, 0]

as the expected value of the complete-data log-
likelthood w.r.t. the unknown data )’ given the observed
data A and the current parameter estimates el

e [ he expected value can be computed as
B[logp(¥.710)|, 00| = [ logp(¥.31@) ply|x. 01" dy

e [his is called the E-step.
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Expectation-Maximization

e Then, the expectation can be maximized by finding
optimum values for the new parameters © as

O = arg max Q(®, el )

e [his is called the M-step.

e [hese two steps are repeated iteratively where each
iteration Is guaranteed to increase the log-likelihood.

e The EM algorithm is also guaranteed to converge to a
local maximum of the likelihood function.
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Generalized Expectation-Maximization

e Instead of maximizing Q(@,@(i_l)), the Generalized
Expectation-Maximization algorithm finds some set of
parameters @'Y that satisfy

QO e 1) > e,e! )

at each iteration.

e Convergence will not be as rapid as the EM algorithm
but it allows greater flexibility to choose computationally
simpler steps.
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Mixture Densities

e A mixture model is a linear combination of m densities

p(x|®) = Zoz]pj (x]0;)

where ® = (ay,...,Qy,01,...,0,) such that o; > 0
and > 70 = 1.

® (q,...,q,, are called the mixing parameters.

e pi(x|0;), j = 1,...,m are called the component

densities.
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Mixture Densities

e Suppose that X = {x1,...,X,} is a set of observations
i.i.d. with distribution p(x|®).

e The log-likelihood function of ® becomes

1=1

log L(©]X) =log | | p(x:]©) = Zlog (Z%Pj(xiwg‘))

e \We cannot obtain an analytical solution for ® by simply
setting the derivatives of log L(®|X’) to zero because
of the logarithm of the sum.
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Mixture Density Estimation via EM

e Consider X as incomplete and define hidden variables V = {y; }}*_,
where y; corresponds to which mixture component generated the
data vector x;.

e In other words, y; = j if the i'th data vector was generated by the
7'th mixture component.

e Then, the log-likelihood becomes

log L(®|X,Y) = log p(X,Y|©)

- Z log(p(xi|ys, 0:)p(yi]0s))

= Z log(cry,py, (%i|0y,))

1=1
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Mixture Density Estimation via EM

e Assume we have the initial parameter estimates
OW = (ol ... alP 6\ ... 09).

e Compute
p(yi|xi @(g)) _ &éi?)pyi(xf,;ya;i)) ~ Oz?gg)pyi(xiw;gi))
p(xi|®) > i1 a§g)Pj(Xi|9,§'g))
and )
p(y|X, @(g)) — Hp(yi‘xi7 @(g))
i=1
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Mixture Density Estimation via EM
e Then, Q(©,O9) takes the form

Q(©,09) = "logp(X,y|®)p(y|X,0)

Yy

=53  log(aps (x10;))p(i xi, )

71=1 1=1
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Mixture Density Estimation via EM

e We can maximize the two sets of summations for a; and 0;
independently because they are not related.

e The expression for a; can be computed as

e .
aj = EZP(J\Xa@(g))
1=1
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Mixture of Gaussians

e We can obtain analytical expressions for 8, for the special case of
a Gaussian mixture where 6 = (p;, 3;) and

p;(x]05) = p;(x|p;, X;5)

1 1 T —1
- (2m)/2| %] 1/2 exXp _§(X_“j) 2 (x = p )

e Equating the partial derivative of Q(@,G)(g)) with respect to p;
to zero gives

S p(ilxi, ©9)x;
2?21 p(j|Xi7 @(g))

Hi =
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Mixture of Gaussians

e \We consider five models for the covariance matrix Ej:
> Ej e |

7= 3 plilxs 09 xi — g

7=1 1=1
> Ej — O'JQ-I
o iy p(ilxe, ©'9)1xi — g
95 = n . @)
d) i1 p(j|%si, ©F)
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Mixture of Gaussians

e Covariance models continued:
» X = diag({o?,}1_,)

2 Z?:l p(]’X'La @(g>)(x’bk — I“l’gk)Q

Ok = n .
j Zfi:lp(ﬂxi? @(9))
> =3
2= EZ; Z;P(J\Xia O'9))(x; — pj)(xi — py)
j=1i=

» 2. = arbitrary

>y pilxi, ©9) (s — ) (xi — ;)"
> i p(ilxi, ©'9)
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Mixture of Gaussians

e Summary:

» Estimates for «;, p; and 3, perform both
expectation and maximization steps simultaneously.

» EM iterations proceed by using the current estimates
as the initial estimates for the next iteration.

» The priors are computed from the proportion of
examples belonging to each mixture component.

» T he means are the component centroids.

» The covariance matrices are calculated as the
sample covariance of the points associated with each
component.
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Mixture of Gaussians

e Questions:
» How can we find the number of components in the
mixture?

» How can we find the initial estimates for @7

» How do we know when to stop the iterations?
Stop if the change in log-likelihood between two
iterations is less than a threshold.
Or, use a threshold for the number of iterations.
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Examples

e Mixture of Gaussians examples
e 1-D Bayesian classification examples

e 2-D Bayesian classification examples
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Scatter plot ‘Same spherical covariance, log-likelihood = -806.078560 Different spherical covariance, log-likelihood = -804.209824
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(a) Scatter plot. (b) Same spherical covariance, (c) Different spherical covariance,

log-likelihood = -806.08. log-likelihood = -804.21.

Different diagonal covariance, log-likelihood = -630.461064 ‘Same full covariance, log-likelihood = -810.928655 Different full covariance, log-likelihood = -523.114308

-0.51

(d) Different diagonal covariance, (e) Same arbitrary covariance, (f) Different arbitrary covariance,

log-likelihood = -630.46. log-likelihood = -810.93. log-likelihood = -523.11.

Figure 1: Fitting mixtures of 5 Gaussians to [datal from a circular distribution.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gmix_example.mat

True densities and sample histograms Linear Gaussian classifier, P_ = 0.091400
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(a) True densities and sample histograms. (b) Linear Gaussian classifier with P, = 0.0914.

Quadratic Gaussian classifier, Pe =0.083700 Mixture of Gaussian classifier, Pe = 0.086900
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(c) Quadratic Gaussian classifier with P, = 0.0837. (d) Mixture of Gaussian classifier with P. = 0.0869.

Figure 2: 1-D Bayesian classification examples where the [datal for each class come
from a mixture of three Gaussians. Bayes error is P. = 0.0828.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier_example.mat

Scatter plot of two classes
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(c) Quadratic Gaussian classifier with P, = 0.012829.

Linear Gaussian classifier, Pe =0.094531
.
O sample A
+ sample B
=== fitted A
- fitted B
== dec.bound.

Gaussian classifier with P, = 0.094531.

Mixture of Gaussian classifier, Pe =0.002026

O sample A
+ sample B
=== fitted A

- fitted B
== dec.bound.

(d) Mixture of Gaussian classifier with P = 0.002026.

Figure 3: 2-D Bayesian classification examples where the |data| for the classes come
from a banana shaped distribution and a bivariate Gaussian.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier2_example.mat

Scatter plot of two classes
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(b) Quadratic Gaussian classifier with P, = 0.1570.

Figure 4: 2-D Bayesian classification examples where the [data

from a banana shaped distribution.
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(a) Scatter plot.
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(c) Quadratic Gaussian classifier with P, = 0.0100.

for each class come
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier3_example.mat

